美國總統歐巴馬計劃增加頻譜執照之收費

  美國總統歐巴馬於2009年2月26日提出的預算計畫書中(A New Era of RESPONSIBILITY: The 2010 Budge),提議增加無線頻譜收費(wireless spectrum fee)以幫助打銷1.7兆美元的財政赤字,該項提議預計在未來十年內,將為國庫帶來480億美元的財政收入,惟此提議卻遭質疑內容不夠清楚,且可能有礙原先政府提倡更有效率地使用頻譜之目的。

 

  目前相關收費的細節不明。由於先前業者經由拍賣,以高昂價格取得頻譜執照主要係為提供語音及數據服務使用,因此外界推測此費用增加計劃可能針對電視與廣播頻譜收取頻率執照費。不過本案在送交眾議院審議前仍有改變之可能。

 

  歐巴馬執政團隊於提出該項計畫後,Sprint Nextel與Verizon Wireless即刻提出問題,希望進一步了解其內容與相關規範,但白宮尚未針對該等問題做出回覆。收費標準設定勢必對現有現有廣電及電信業者,甚至頻譜交易市場造成影響,甚至影響頻譜使用的效益。

 

  4月預算管理局(OMB)將提出的預算案中,會揭露更多有關該項收費增加的計劃說明。

相關連結
相關附件
※ 美國總統歐巴馬計劃增加頻譜執照之收費, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=3016&no=0&tp=1 (最後瀏覽日:2026/01/10)
引註此篇文章
你可能還會想看
經濟部擬推動太陽能與生質能技術,發展成為新雙星產業

  國內半導體產業及面板產業等科技產業,近年發展瀕臨瓶頸,尤其是面板產業,投資動輒上千億元,但這些資金密集產業,受景氣循環波動很大,半導體本質上又是代工型產業,面對全球化浪潮,必須思考如何走出代工微利宿命,太陽能光電及生質能是台灣最具發展潛力的明星產業,發展潛力更足以凌駕半導體及面板雙星產業,成為台灣未來的產業雙星。   目前半導體及面板產業,產值達兆,再生能源產業短期內難取代,不過,如果技術可以有所突破,爆發力將相當大。當前除經濟部大力推動休耕的農田轉作向日葵、大豆等能源種植,推廣生質柴油外,中研院研究團隊已可以從稻桿的纖維素提煉酒精核能所也有煉製酒精汽油技術,一旦跨部會研究團隊機制整合,並透過基因改造提升煉油技術,將可獲致驚人的突破。

歐盟孤兒著作指令(Directive 2012/28/EU)立法評析

美國FDA將整合區塊鏈等新興技術於電子協同運作系統之開發,以提升藥物供應鏈的安全性

  依據2013年11月27日通過之藥物供應鏈安全法(Drug Supply Chain Security Act, DSCSA),美國食品與藥物管理局(US Food and Drug Administration, FDA)於2019年2月7日公布新的領航計畫(Pilot Program)。此計畫主要的目標在於發展電子協同運作系統(electronic, interoperable system)以降低不合規範的藥物於市場流通的可能性,並提升患者的用藥安全。   此運作系統預計於2023年開始正式實施,其主要的功能包含辨識(identify)或追蹤處方藥物(prescription drugs)於供應鏈中的流通狀態,以及排除非法藥物進入供應鏈。於後者的情形,此運作系統將同時協助相關主管機關在非法藥物於市場中流通時迅速反應。FDA進一步指出,為達到這些目的,將引入區塊鏈(blockchain)等已使用在全球食品供應鏈(global food supply chains)的管理技術,以促進系統運作過程中的可追蹤性(traceability)及準確性。   此計畫於2019年2月8日到3月11日間接受加入申請,FDA鼓勵供應鏈中的相關人員,包含製造商(manufacturers)、再包裝商(repackagers)及其他利害關係人(other stakeholders)加入並試行計畫中開發的運作系統等技術,以加強產品使用狀況的管理。此外,FDA未來將持續公布相關的指引草案,如藥物辨識指標(product identifiers)等,以提升產業利用性及藥物使用的安全性。

英國發布人工智慧網路資安實務守則

英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。

TOP