美國總統歐巴馬計劃增加頻譜執照之收費

  美國總統歐巴馬於2009年2月26日提出的預算計畫書中(A New Era of RESPONSIBILITY: The 2010 Budge),提議增加無線頻譜收費(wireless spectrum fee)以幫助打銷1.7兆美元的財政赤字,該項提議預計在未來十年內,將為國庫帶來480億美元的財政收入,惟此提議卻遭質疑內容不夠清楚,且可能有礙原先政府提倡更有效率地使用頻譜之目的。

 

  目前相關收費的細節不明。由於先前業者經由拍賣,以高昂價格取得頻譜執照主要係為提供語音及數據服務使用,因此外界推測此費用增加計劃可能針對電視與廣播頻譜收取頻率執照費。不過本案在送交眾議院審議前仍有改變之可能。

 

  歐巴馬執政團隊於提出該項計畫後,Sprint Nextel與Verizon Wireless即刻提出問題,希望進一步了解其內容與相關規範,但白宮尚未針對該等問題做出回覆。收費標準設定勢必對現有現有廣電及電信業者,甚至頻譜交易市場造成影響,甚至影響頻譜使用的效益。

 

  4月預算管理局(OMB)將提出的預算案中,會揭露更多有關該項收費增加的計劃說明。

相關連結
相關附件
※ 美國總統歐巴馬計劃增加頻譜執照之收費, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=3016&no=0&tp=1 (最後瀏覽日:2026/01/28)
引註此篇文章
你可能還會想看
英國通訊傳播管理局發表「開放通訊:使人們能夠透過創新服務共享資料」,提供通訊業者建立開放通訊(Open Communications)之原則建議

  英國通訊傳播管理局(The Office of Communications, Ofcom)於2020年8月發布「開放通訊:使人們能夠透過創新服務共享資料」(Open Communications: Enabling people to share data with innovative services),針對開放通訊的設計原理提出七點建議: 應盡可能讓符合條件的第三方能夠近用(access)資料,同時確保用戶受到保護。 應提供客戶一些目前無法取得的資料,例如有關網路服務品質的體驗報告,以提供使用者做為未來交易時之參考。 資料的提供商和第三方必須確保資料儲存和傳輸的安全性。 第三方將如何使用有關客戶的資料及是否含有潛在風險等,皆應清楚透明地告知使用者,並且讓共享資料之使用者仍保有控制權限。 開放通訊服務之設計應符合包容性設計(inclusive design),提高使用者使用意願。 開放通訊仍應維持市場競爭。 提供資料所需的成本應與資料開放的潛在收益成比例。原則上,參與開放通訊的通訊提供者越多,對個人和小型企業的整體價值就越高。惟,若是強制要求用戶數少或是無法承擔該技術的小型提供商加入,可能導致成本與收益不成比例。   除此之外,對於應開放何種資料則須循序漸進。除了增加對第三方客戶資料近用權限之外,首先,應針對開放對資料提供者風險低,但對潛在用戶有較高利益的資料,例如:不包含個人訊息的資料,從而降低匿名化過程中所產生之風險;第二,開放低風險的地理空間資料(geospatial data),目的在於改善該地區的整體地理空間資料基礎架構。最後才是開放有關各種通訊產品中的其他資料,以促進消費者的選擇和保護。   綜上所述,考慮到開放通訊之可行性,需進一步與其他資料可攜性計劃的主要代表進行會談(如銀行業者),尋求各行業主要服務提供商的支持。再者,考慮是否訂定相關法律以及如何進行監管。第三,應標準化客戶資料,以及確保資料移動之安全性及用戶控制權限,最後則是降低資料開放之成本,以達成開放通訊所帶來之效益。

英國資訊委員會(ICO):企業應用巨量資料技術時可能得以合法權益為由處理個人資料

  英國資訊委員會(Information Commissioner’s Office, 以下簡稱ICO)最近對於2014年「巨量資料與個資隱私保護報告」(Big Data and Data Protection)進行公眾意見徵集。其中有意見認為ICO過度聚焦於以取得資料當事人同意為前提,才得以進行巨量資料統計分析技術應用;且未充分認知當資料控制者(企業或組織)具合法權益(legitimate interest)時,可能得以處理個人資料的可能。意者並進一步建議當資料控制者(企業或組織)符合合法權益時,應可將個人資料用於新用途,強調這種依據合法權益所進行之資料處理,應著重於該資料控制者(企業或組織)對於個人資料的責任(accountability),而非各別取得資料當事人的同意。   對此,ICO回覆,認為巨量資料統計分析技術的應用,應在資料控制者(企業或組織)的合法權益、與資料當事人的權利、自由與合法權益間,取得平衡。依據歐盟資料保護指令(Data Protection Directive)與英國資料保護法(Data Protection Act)的規定,資料控制者(企業或組織)得於具法定依據時,處理個人資料,例如取得個資當事人的同意處理其個人資料,或資料控制者(企業或組織)具法定義務處理個人資料(例如法院命令)。除此之外,企業或組織還可以主張於其對於個人資料具合法權益(legitimate interest),主張進一步處理個人資料(新用途),除非資料處理對於資料當事人的權利、自由與合法權益造成過份偏頗(unduly prejudice)的損害。ICO亦同意,資料的應用應著重監督資料控制者(企業或組織)與加強其責任(accountability)。   ICO除再度闡明在「巨量資料與個資隱私保護報告」,資料控制者(企業或組織)必須公平且通透(transparent)地處理個人資料,對於當資料控制者(企業或組織)發現個人資料的新用途時,亦明列出得依據先前所取得之資料當事人的同意進行個人資料的各種情況。   ICO建議,資料控制者(企業或組織)應當先行檢視資料當事人是否確實同意其個人資料的處理,或該資料控制者具處理個人資料之其法定依據。再者,如果不具上述二者之一,資料控制者(企業或組織)若需將使用個人資料於新用途,則必須另行取得資料當事人的同意,始得為之。此時,必須同時評估為了新用途所為之個人資料處理,是否與資料蒐集之特定目的相容(compatible)。   至於,判斷新用途是否與個人資料蒐集與處理之特定目的相容,部分取決於個人資料處理是否公平(fair)。這意味著資料控制者(企業或組織)必須對於為新用途所為之個資處理,提出對於資料當事人隱私影響之評估,以及該個資的使用與處理,是否仍合於資料當事人的合理期待。

國內推廣生質柴油仍待政府協助

  耐斯集團旗下台灣新日化公司今( 94 )年開始生質柴油商業運轉,卻面臨植物原料短缺以及政府推動生質柴油政策不如歐美先進國家明確等困境。   由於國內生質柴油每公升 35 元,價格遠高於石化柴油,再加上欠缺銷售通路、使用不便及原料來源不足等問題,生質柴油產業發展面臨困難,急需政府協助。台灣新日化總經理張志毓強調,政府若能效法美國、法國等先進國家,政策規定傳統石化柴油須添加一定比率的生質柴油,並鼓勵國內休耕、廢耕地業主種植向日葵、油麻菜籽等生質柴油原料,不僅可降低生質柴油製造成本及售價,有效擴大生質柴油的使用,亦可達到降低環境汙染及促進資源利用等多重目的。   國外部分國家如法國、美國,也有以政府政策規定石化柴油添加部分生質柴油,同樣有減少二氧化碳排放量的效果。全球使用生質柴油最多的地區在歐盟,德國是全球使用量最多的國家,佔全球比率高達四成。   在經濟部能源局推動生質柴油產業化政策的計劃支持下,去年台灣新日化與工研院能資所共同建立生質柴油示範工廠,已於 10 月 8 日公開啟用,初期第一套設備年產為 3,000 公噸,全部設備總產能可達到 1 萬公噸,今年開始商業運轉,也是我國發展植物替代石化燃料的新里程碑。台灣生質柴油應用於交通工具,仍在試驗階段,例如嘉義縣環保部分清潔車即使用台灣新日化生質柴油,尚未發現有不良反映。

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

TOP