美國總統歐巴馬計劃增加頻譜執照之收費

  美國總統歐巴馬於2009年2月26日提出的預算計畫書中(A New Era of RESPONSIBILITY: The 2010 Budge),提議增加無線頻譜收費(wireless spectrum fee)以幫助打銷1.7兆美元的財政赤字,該項提議預計在未來十年內,將為國庫帶來480億美元的財政收入,惟此提議卻遭質疑內容不夠清楚,且可能有礙原先政府提倡更有效率地使用頻譜之目的。

 

  目前相關收費的細節不明。由於先前業者經由拍賣,以高昂價格取得頻譜執照主要係為提供語音及數據服務使用,因此外界推測此費用增加計劃可能針對電視與廣播頻譜收取頻率執照費。不過本案在送交眾議院審議前仍有改變之可能。

 

  歐巴馬執政團隊於提出該項計畫後,Sprint Nextel與Verizon Wireless即刻提出問題,希望進一步了解其內容與相關規範,但白宮尚未針對該等問題做出回覆。收費標準設定勢必對現有現有廣電及電信業者,甚至頻譜交易市場造成影響,甚至影響頻譜使用的效益。

 

  4月預算管理局(OMB)將提出的預算案中,會揭露更多有關該項收費增加的計劃說明。

相關連結
相關附件
※ 美國總統歐巴馬計劃增加頻譜執照之收費, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=3016&no=65&tp=1 (最後瀏覽日:2025/12/08)
引註此篇文章
你可能還會想看
歐盟倡議「邁向資料經濟時代」政策,規劃巨量資料Big Data發展策略

  2014年7月歐盟執委會針對巨量資料規劃新的政策,提出「邁向資料經濟時代」(Towards a thriving data-driven economy)政策,對研究發展帶來激勵,創造更多的商業機會。先前在2010年至2015年巨量資料科技與服務市場觀察報告中,指出預期巨量資料科技複合成長率為40%。從這些國際趨勢觀察,智慧聯網與巨量資料涉及的領域包括健康、食品安全、氣候與能源資源、智慧運輸系統以及智慧城市等,而這些都是當前歐洲無法忽略的問題。因此,此政策中指出應支持重點資料來促進公共服務與市民生活的競爭力與品質,廣泛分享使用並發展公開資料資料以及研究資料、確認相關的法律架構與政策屬有利發展、利用政府採購將資料科技帶入市場等項重點,以促成資料驅動經濟的全球化發展。   歐盟指委會並指出,推動巨量資料政策的施行尚仰賴於其他的行動計畫以及各個會員國之間的合作 。而在資料蒐集與利用逐漸擴張的情形下,歐盟執委會更於2014年7月2日發出聲明,要求各國政府應重視巨量資料帶來的問題,並且指出在巨量資料的公共諮詢中,有主要四個問題: (1)缺乏跨境的合作(2)未具有充分設施以及資金資助機會(3)缺乏資料專家以及相關技術(4)法規範過於零散且複雜。因此,歐盟執委會提出以下幾點,有助於問題的解決: 1. 透過公私營合作制度資助巨量資料發展,特別是在個人醫療領域上的應用。 2. 在Horizon 2020架構下,設立巨量資料中心,將以資料為基礎,將之與雲端使用構成供給鏈,藉此幫助中小企業。 3. 當透過智慧聯網,及機器與機器間通訊取得資料時,應針對資料所有權以及責任規範建立新的準則。 4. 建構資料標準,找出潛在的缺漏。 5. 建立一系列超級運算中心,增加歐洲資料專家。 6. 在不同會員國建立資料處理設施之聯結網絡 。   歐盟執委會希望能於上述各項政策推動下,共同建立有助資料經濟發展基礎架構及環境,並鼓勵產業界共同投入巨量資料的應用發展。

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

歐盟執委會針對研究發展與創新通過新的國家補助綱要架構(state aid Framework for Research, Development and Innovation)

  根據歐盟條約,國家補助的行為原則上為條約所禁止,例外須經歐盟執委會核准。為使會員國得以事先瞭解哪些行為會被認為符合共同市場的精神,歐盟執委會在11月22日針對國家補助規則,通過了「研究發展與創新綱要架構」(Community framework for state aid for research and development and innovation,以下簡稱為R&D&I Framework),期能加速此類案件的審理效率。新綱要架構規定預計自2007年1月1日起開始生效適用。   根據新的綱要架構,會員國在規劃其國家補助措施之際,仍有義務通知執委會,經執委會確認或核准後,始符合歐盟相關法制。不過執委會認為,會員國在規劃國家補助措施時,如能依循綱要架構的指導說明,將可加速執委會的作業,提升審查效率。   過去僅有研發補助可例外被認為符合歐盟條約之精神,惟根據新的綱要架構,除了研發補助以外,創新補助亦是可以獲得豁免管制者。此外,綱要架構對特定有助於研究發展與創新的國家補助措施類型,提供了詳細的指導原則說明,這類國家補助措施可以帶動私人企業的研發與創新投資,有助於經濟成長與就業,因而可提升歐盟的競爭力。   R&D&I Framework同時也允許會員國視其國內發展狀況與特殊條件,設計符合該國之補助措施,前提是要符合可矯正特定市場失靈的檢視要件,且其所設計的措施可能帶來的優惠超出補助對競爭可能造成之損害。   另新綱要架構也指出阻礙研發與創新的主要市場失靈的因素如下:知識外溢(knowledge spill-overs)的效果有限、資訊不足與不對稱(imperfect and asymmetric information)、缺乏協調與網絡建構(coordination and network failures)。此外,新綱要架構中亦針對各類行的國家補助措施,逐項為會員國解說如何妥善運用,以符合補助規則(state aid rules)。這些政策措施如下: ●研發計畫(aid for R&D projects); ●技術可行性之補助研究(aid for technical feasibility studies); ●對中小型企業智慧財產權費用給予補助(aid for industrial property right costs for SMEs); ●對新創事業提供補助(aid for young innovative enterprises); ●對服務流程及組織功能創新所提供之補助(aid for process and organisational innovation in services); ●對智慧財產提供諮詢或支援服務之補助(aid for innovation advisory services and for innovation support services); ●對中小型企業因晉用高級專業人員所需之貸款提供融資的補助(aid for the loan of highly qualified personnel for SMEs); ●對創新育成事業提供的補助(aid for innovation clusters)。 新的綱要架構同時希望可以改善歐盟對國家補助的管控機制,集中資源於管理對可能破壞競爭的案件,故綱要架構對於具有高度破壞競爭與交易風險的鉅額案件,詳細說明了執委會如何進行個案評估。

歐盟執委會通過下世代接取網路管制建議

  歐盟在今年5月19日公布的數位議程(Digital Agenda)中,設定了多項寬頻建設目標,包括所有歐洲民眾於2013年均能擁有基本寬頻, 2020年擁有30Mbps以上的高速寬頻,與50%以上的歐盟家戶擁有100Mbps以上的超高速寬頻。為達成此項目標,歐盟執委會於今年9月20日提出了採納下世代網路管制建議(Commission Recommendation on regulated access to Next Generation Access Networks(NGA))、提出未來五年的無線電頻譜政策計畫,與鼓勵公、私部門進行寬頻網路投資等三項主要推動措施。    在NGA管制建議正式公布前,執委會曾於2008年與2009年兩度就建議草案進行公開資詢。執委會認為,此一建議除了可提升管制明確性,避免管制假期(regulatory holidays)外,並在鼓勵投資與維護競爭間取得適當平衡,其重要管制原則如下:   1. 管制者對於獨占業者之光纖網路接取進行成本訂價管制時,應藉由風險溢價(risk premium)充分反應投資風險,使投資者能獲取具吸引力之利潤。   2. 管制者應採取適當的接取管制措施,促使新進業者進入市場,使其可依投資階梯(ladder of investment)逐步建置其自有網路,促進基礎設施競爭。   3. 管制者所採取之事前管制措施,應反映個別市場與城鄉區域之市場競爭差異。   4. 管制建議強烈支持NGA網路的共同投資,並對長期或大量的光纖迴路接取合約,允許在一定條件下給予價格折扣。

TOP