歐洲議會於2009年3月26日,以大多數支持Lambrinidis報告中關於網路上個人自由保護之投票結果,反對法國政府和著作權行業提出的修正案。歐洲議會的態度是「保障所有公民接近使用網路就如同保障所有公民接受教育」,而且「政府或私人組織不能以處罰之方式拒給這種接近使用的權利」。歐洲議會議員要求會員國政府需體認到網路是一個有效增加公民權利義務之特殊機會,就這方面而言,使用網路及網路內容是一個關鍵要素。
這份報告被歐洲議會議員所採用,得以認識到提供安全措施來保護網路使用者(特別是孩童)之必要性,由於使用者可能會因使用網路,而暴露在成為罪犯或恐怖份子的犯罪工具的風險中。報告中提出方案對抗網路犯罪,但同時也要求在安全及網路使用者基本權利保障中尋求平衡點。 此報告否定法國所提之修正案,歐洲議會又再度否決由法國努力推動「網路侵權三振法案」(three strikes file-sharing law)。歐洲議會認為對於所有網路使用者的監測活動及對於侵權者之處罰有違比例原則。歐洲議會亦公開支持「網路權利憲章」(Internet Bill of Rights)以及推動「隱私權設計」(privacy by design)宗旨。
美國白宮終於2012年4月26日正式發布「國家生物經濟藍圖」(National Bioeconomy Blueprint),宣告未來美國將以生物技術為首的投資、研究與商業經濟活動列為優先支持的對象。近年來美國苦思於如何在國內經濟成長疲軟與失業問題上尋求解套,而有鑒於全球「生物經濟」(Bioeconomy)的快速崛起,歐巴馬政府遂寄望於生物經濟,期望藉由支持生物技術的研究創新與商業活動,帶動國內投資、提升就業率及經濟成長,並仰賴生物科技的發展增進國民福址。因此,白宮科學與技術政策辦公室(The White House's Office of Science and Technology Policy, OSTP)便於2011年10月起開始向生物醫藥、生物科技相關產業及研究機構徵集意見,歷經半年的規劃,始產出此部發展藍圖。 國家生物經濟藍圖首先劃定生物經濟的五大趨勢,包括:健康、能源、農業、環境及知識技術的分享。其次揭示了未來美國生物經濟的五大發展策略目標及其具體作法: (一)支持各項研發投資以建立生物經濟的發展基礎: (1)強化生物技術的各類研究發展,如生物醫藥、生質能源、生物綠建築、生物農業等 (2)實施新的補助機制以使得生物經濟投資達最大化,例如國家科學基金會於2012年推動的CERATIV(Creative Research Awards for Transformative Interdisciplinary Ventures)獎補助計畫。 (二)促進生物技術發明的市場應用與商業化: (1)加強生物醫藥的轉譯及管制科學(translational and regulatory science)發展; (2)由國家衛生研究院(National Institutes of Health,NIH)及食品藥物管理局(Food and Drug Administration,FDA)等相關主管機關主動檢視、調整既有法規,以加速生物技術成果的商業化(如生物醫藥的上市)。 (三)改革並發展相關規範,以減少法規障礙、增加規範程序的效率與可預測性: (1)減少可能影響生醫產業發展的法規障礙; (2)對於低風險的醫療裝置,降低其遵循法規的成本負擔; (3)由食品藥物管理局等相關主管機關,對於醫藥產品採行雙向規範審查(Parallel Regulatory Review),以減少產品上市時間。 (四)更新相關國家人才培訓計畫,並調整學術機構對學生訓練的獎勵機制,以符合國家與產業發展的勞動需求。 (五)支持公私夥伴及競爭前合作(Precompetitive Collaborations)關係的發展:由國家衛生研究院及食品藥物管理局等相關主管機關鼓勵、支持公私或私人部門間形成夥伴關係,共同針對生物醫藥及食品安全進行創新研究發展。 由「國家生物經濟藍圖」對美國未來生物經濟發展的策略及具體做法看來,其內容相當廣泛,從促進各種生物技術的研發投資、生技成果商業化運用、產品上市管制鬆綁、科技人員培育,再到公私部門合作的增進,完整涵蓋了整個生物技術產業發展的各個必要環節,雖已點出生物技術產業發展有待突破之處,但對於其具體法規與配套機制,仍有待日後一一落實。因此,未來本藍圖將如何形塑美國各領域生物技術產業的輪廓,並影響法規與促進機制之細節,值得持續觀察之。
美國法院新判決,讓Rambus公司無法取得Micron公司的權利金美國德拉瓦(Delaware)州法庭於1月9日判決,記憶體晶片(DRAM)設計業者Rambus公司(Rambus Inc.)因在訴訟過程中,毀壞此一專利訴訟案件的相關文件與資料,使其專利不具執行力。因此無權以系爭的12項專利要求 Micron公司(Micron Technology Inc.)支付權利金。判決公告後,Rambus公司的股價因而重挫約40%。 兩家公司的紛爭可溯至2000年,該年度Micron公司曾控告Rambus公司,宣稱Rambus公司試圖掌控當時DRAM晶片的市場。當時,Rambus公司要求Micron公司在內的晶片製造業者須支付權利金給該公司,而晶片製造業者則予以反擊,宣稱Rambus公司取得專利的過程有瑕疵。 雙方除於法院進行訴訟外,並利用美國聯邦貿易委員會(FTC)進行紛爭處理,互有勝負。例如:去年11月,加州地方法院宣判Rambus公司控告Micron公司、海力士(Hynix)、三星電子(Samsung Electronics)與南亞科技(Nanya Technology)等公司侵權一案,獲得初步勝利。然而如今法院的判決卻又重擊Rambus公司,因為該判決可能使該公司往後難以利用其所擁有的專利,迫使其他晶片製造業者支付權利金,也因此造成Rambus公司股價重挫的情形。
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
資訊社會法制架構初探-以2003年聯合國資訊社會高峰會之決議為借鏡