新時代的管理利器-系統化的企業員工管理制度

刊登期別
第21卷,第6期,2009年06月
 

※ 新時代的管理利器-系統化的企業員工管理制度, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=3070&no=0&tp=1 (最後瀏覽日:2026/02/12)
引註此篇文章
你可能還會想看
歐盟提出通用型人工智慧模型的著作權管理合規措施建議

歐盟提出通用型人工智慧模型的著作權管理合規措施建議 資訊工業策進會科技法律研究所 2025年07月23日 為推動以人為本且值得信賴之人工智慧(Artificial Intelligence, AI)應用,同時確保高度保護健康、安全及歐盟《基本權利憲章》所載之基本權利,包括民主、法治及環境保護,防止AI在歐盟境內造成有害影響,並依據歐盟《人工智慧法》(AI Act, AIA)第1條第1項支持創新。歐盟人工智慧辦公室(The European AI Office) 於2025年7月10日提出《人工智慧法案》關於通用型人工智慧的準則(The General-Purpose AI Code of Practice)[1],以下簡稱「GPAI實踐準則」。 該準則由辦公室擬定計劃邀集通用型人工智慧(以下簡稱GPAI)模型提供商、下游提供商、公協會、權利人、專家學者、民間團體組成工作小組,進行討論與草擬。目的在協助GPAI模型的提供者符合AIA要求其應訂定模型技術文件,提供給下游提供者,並應制定著作權政策、發布訓練內容摘要的規定。預計將自 2025 年 8 月 2 日起適用。 壹、事件摘要 歐盟GPAI實踐準則包括透明度、著作權與安全維護(Transparency, Copyright, and Safety and Security)三大章節。為證明符合AIA第53條及第55條所規定義的指導文件(guiding document),並確保GPAI提供者(providers)遵守其在《人工智慧法》下之義務,於該準則於著作權章節提供適用AIA第53條第1項(c)款規定[2]的措施建議。 該準則強調採取相關措施可以證明符合前揭定之義務,但符合歐盟著作權及相關權利法規,並不以遵守該準則為要件,而且也不會影響歐盟著作權及相關權利法規的適用與執行,其權利最終歸屬法院。而著作權人依法保留的權利,以及針對文字與資料探勘(Text and Data Mining, TDM)的例外或限制 (EU 2019/790號指令第4條第1項),仍應在合法條件下適用。 考量到一些GPAI提供者是新創企業,規模有別於一般企業,故該準則亦強調其所要求採取的是相稱措施(proportionate measures),應與提供者之規模相稱且合乎比例(commensurate and proportionate),並充分考量中小企業(SMEs),包括新創公司(startups)之利益。 貳、重點說明 該準則建議GPAI提供者,採取訂定著作權政策、合法重製、尊重權利保留、積極防止侵權、提供問責管道等五大著作權管理措施。 一、訂定、維持並實施著作權政策 為證明已符合AIA第53條第1項(c)款所負之義務,GPAI提供者針對其投放於歐盟市場之通用人工智慧模型,應制定政策以遵守歐盟著作權及相關權利法規。該準則建議提供者應將著作權章節所列措施納入於政策中,公開發布並維持最新狀態其著作權政策摘要,且在組織內部指派負責實施和監督。 二、獲取合法可存取之受著作權保護內容 GPAI提供者進行 EU 2019/790號指令第2條第2項之文字與資料探勘及訓練其通用人工智慧模型進行網際網路內容的重製並擷取時,例如使用網路爬蟲(web-crawlers)或授權他人使用網路爬蟲代其抓取(scrape)或以其他方式編譯資料,應防止或限制對作品及其他受保護標的物之未經授權行為,特別是應尊重訂閱模式(subscription models)或付費牆(paywalls)所施加之任何技術性拒絕或限制存取。而且在進行網路爬取時,應排除歐盟認定為持續且重複大規模商業侵犯著作權及相關權利之網站。 三、識別並遵守權利人的權利保留 GPAI提供者文字與資料探勘及訓練其通用人工智慧模型,其網路爬蟲應識別並遵守EU 2019/790號指第4條第3項的機器可讀(machine-readable)權利保留[3],讀取並遵循機器人排除協議(Robot Exclusion Protocol, robots.txt)。 該協議包括任何經網際網路工程任務組(Internet Engineering Task Force,IETF)證明技術上可行且可由AI提供者和內容提供者(包括權利人)實施之版本,或經國際或歐洲標準化組織採納透過基於資產(asset-based)或基於位置(location-based)之詮釋資料(metadata)等其他方式的機器可讀協議。亦包括通常係透過在歐盟層級經由權利人、AI提供者及其他相關利害關係人參與討論所達成共識的識別方案。 GPAI提供者亦應透過公開該等資訊並提供受影響權利人可在該等資訊更新時自動獲得通知的適當措施,使受影響之權利人能夠取得相關資訊,包括所用的網路爬蟲、所採識別並遵守權利保留之措施。 四、降低著作權侵權輸出之風險 為降低整合GPAI模型的下游人工智慧系統(downstream AI system),生成可能侵害著作權或相關權利的作品或其他標的物GPAI提供者應實施適當且合乎比例之技術保障措施,防止其模型生成以侵權方式重製受歐盟著作權及相關權利法規保護之訓練內容。;同時,在使用政策、條款與條件或其他類似文件中禁止模型用於著作權侵權目的。對於以自由及開源授權(free and open source licenses)發布之GPAI模型,應在隨附文件中請使用者注意禁止模型用於著作權侵權用途。無論是將模型整合至其自身的人工智慧系統,或係依據契約關係提供給他人。 五、提供聯繫受理管道 GPAI提供者應提供與受影響權利人進行連繫的管道與資訊,讓受影響之權利人及其代理人(包括集體管理組織(collective management organizations))以電子方式進行投訴。同時,勤勉、非任意地並在合理時間內處理投訴,除非投訴明顯無根據,或已對同一權利人提出之相同投訴作出回應。 參、事件評析 美國先前於2025年6月23日曾由加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出AI訓練行為可主張合理使用的簡易裁決(summary judgment)[4]。但法官仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定,並不支持盜版一本本來可以在書店購買的書籍對於創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。 這次歐盟的準則更明確指出,GPAI提供者進行文字與資料探勘及訓練其通用人工智慧模型,以網路爬蟲(web-crawlers)進行網際網路內容的擷取,應尊重訂閱模式(subscription models)或付費牆(paywalls)所採取的技術性拒絕或限制存取。而且在進行網路內容爬取時,應排除歐盟認定為持續且重複大規模商業侵犯著作權及相關權利之網站,即訓練資料的取得必須是合法。而且必須積極使用可識別並遵守機器人排除協議(Robot Exclusion Protocol, robots.txt)的技術,更應透過公開該等資訊、提供受影響權利人可在該等資訊更新時自動獲得通知的適當措施,使受影響之權利人能夠及時知悉所用網路爬蟲、所採尊重權利保留之措施。 雖然前揭美國法院案件正在進行審理,但顯然與歐盟的GPAI實踐準則及美國著作權局的合理使用立場[5]一樣,均不認同迴避權利保護施、自盜版網站取得的資料之情況。我國日前發生七法與法源公司之間的著作權訴訟,七法以網路爬蟲爬取法源公司於使用條款限制存取的資料,並非技術創新撞上不合時宜的舊有法律框架,而是創新應用仍應在合理保護權利的前提下進行。 歐盟GPAI實踐準則所揭示的政策制訂、尊重權利保留、積極防止侵權、提供有效且給予合理回應的問責管道等AIA合規要求,已提示GPAI的開發、服務提供,應如何透過公開、揭露措施來配套降低科技創新應用過程對既有權利的影響,也指引其應建立的內部管理與外部溝通重點。對於開發、運用GPAI對外提供服務的企業而言,在爭執訓練資料應有合法空間的同時,或許應該思考是否應先採取歐盟GPAI實踐準則所建議的措施,以尊重既有權利的態度,積極降低權利人的疑慮,始有助於形成互利的合法利用空間。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai。(最後閱覽日:2025/07/21) [2]該條款要求將通用人工智慧模型投放於歐盟市場(Union market)之提供者,必須制定政策以遵守歐盟著作權及相關權利法規,特別是透過最先進之技術,識別並遵守權利人依據《第2019/790號指令》(Directive (EU) 2019/790)第4條第3項所表達之權利保留。 [3]指不接受其著作被用於文字與資料探勘目的之利用。 [4]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [5]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。

歐盟執委會通過數位歐洲計畫2023~2024年工作計畫

為促進歐洲的數位轉型,歐盟執委會(European Commission)在2023年3月24日於通過數位歐洲計畫(Digital Europe programme, DEP)下的2023~2024年工作計畫,預計投入12.84億歐元於「主要數位歐洲計畫工作計畫」(Main DEP programme)(下稱「主要工作計畫」)及「網路安全工作計畫」(Cybersecurity Work Programme),以延續之前投入之成果,並加強歐盟對抗網路威脅的集體韌性。 實際上歐盟於2018年即提出第一個數位歐洲計畫,並透過數位單一市場策略(Digital Single Market strategy)嘗試建立符合數位特性的監管框架,藉以提高歐盟的國際競爭力,發展及加強歐洲的數位能力。數位歐洲計畫包括五個重點領域:超級電腦(Supercomputers)、人工智慧(Artificial intelligence, AI)、網路安全及信任(Cybersecurity and trust)、數位技能(Digital skills),以及確保數位技術在經濟及社會中被廣泛使用。 前述所說的主要工作計畫,其投入資金為9.095億歐元,重要工作有三。首先,藉由關注氣候和環境保護技術、數據資料、人工智慧、雲端、網路安全、先進數位技能及部署此些技術之最佳方法,並加強歐盟的關鍵數位能力。第二,關注數位公共服務,強調具跨境互操作性(cross-border interoperability)的公部門解決方案(例如歐洲數位身份)。此外,也將透過歐洲數位媒體觀測站(European Digital Media Observatory, EDMO)打擊假訊息,並以InvestEU計畫下的策略數位技術投資平台,重點支持中小及新創企業關注網路安全。 其次,網路安全工作計畫的投入資金為3.75億歐元,由歐洲網路安全能力中心(European Cybersecurity Competence Centre)負責執行,將支援建立國家和跨境安全操作中心的能力,以打造最先進的威脅檢測及網路事件分析生態系統。網路安全工作計畫還將資助產業(特別是中小及新創企業)遵守網路安全法規要求的項目,特別是網路及資訊系統安全指令(Directive on Security of Network and Information Systems, NIS2)或網路韌性法案(Cyber Resilience Act)所要求的內容。 歐盟已在加強數位公共服務、數位技能及網路安全等方面投入許多資源,其中網路安全、資安威脅和打擊假消息等議題因其不受地區限制而更受到注目,未來仍待持續關注此些議題之發展。

美國規劃推動「供應鏈之星」計畫,國會提出「節能暨產業競爭力法」並審議

  美國國會於2013年4月提出「節能暨產業競爭力法」(Energy Savings and Industrial Competitiveness Act of 2013)草案,並進行審議。該草案由參議員Shaheen女士及Portman先生共同提出,於二讀後交付予參議院「能源暨自然資源委員會」(the Committee on Energy and Natural Resources)進行討論表決。委員會於2013年5月13日以多數決批准該草案並修正若干條款,全案排入美國國會第113會期等待表決。   本草案屬於包裹式立法,旨在提昇住宅及商用建築並產業等多面向之能源節約,共分成四個章節:   首先對於提昇產業生產競爭力領域(Industrial Efficiency and Competitiveness),加強產業轉型,草案中修正「能源獨立及安全法」(Energy Independence and Security Act of 2007)、「能源政策及管理法」(Energy Policy and Conservation Act,並刪修「2005年能源政策法」及「1992年能源政策法」若干條款。計劃在能源部下,成立「供應鏈之星」(Supply Star Program) 計畫,推動整體產業供應鏈之能源效率,達節能、節水或其他自然資源目的。   其次,在建築(Buildings)領域,草案乃修正「能源管理及生產法」(Energy Conservation and Production Act),更新「模範建築能源規範」(model building energy codes);就住宅建築及商用建築,分別以「2009國際能源管理規範」 (International Energy Conservation Code, IECC)及「ASHRAE標準90.1-2010」作為基準,並將經濟成本效益納入考量。   以及在私用商業建築效率提升融資機制(Private Commercial Building Efficiency Financing)上,能源部將啟動「商業建築能源融資倡議」(Commercial Building Energy Financing Initiative),在州的層級,擴大私部門及商業建築進行能源效率翻新工程之補助範疇。   第四,關於聯邦公部門機關之能源效率(Federal Agency Energy Efficiency),草案乃修正「國家能源管理政策法」(National Energy Conservation Act),討論將在聯邦公部門建築導入資通訊科技(ICT),推動能源效率及節約。   本草案就公部門及私部門能源效率之提升皆有著墨,觀察該草案目前已獲得美國商會等數百位企業團體支持。若本會期能順利通過,勢必對於既有能源法制產生一定之變革,相關趨勢當值留意之。

日本政府擬修法擴大個人編號卡(My Number Card)資料使用及調取範圍

日本政府於2022年11月29日公布「個人編號法」(平成二十五年法律第二十七号,行政手続における特定の個人を識別するための番号の利用等に関する法律)之預計修正內容。 目前個人編號法第9條第2項主要限定於社會保障、稅收、災害防治三個領域,該法對哪一些行政機關能調取,以及可調取個人資料的種類均有詳細規定。本次修正案目的為將個人編號的用途擴大,除了前揭所提三個領域外,將再包括國家資格管理、汽車登記以及外籍居民行政程序、國家急難救助金及其他津貼發放等。其次,為擴大個人編號用途與增加運用彈性,此次修法重點之一在於擴大該法第4章第19條特定個人編號(My Number)提供限制中,第17款關於其他依據「個人資料保護委員會」所訂規則準用事項範圍。未來日本政府可透過「政省令」的修改(基於國會立法授權,而由行政部門所頒訂,具有對外法拘束力,類似我國法規命令位階),讓政府及相關機關能在有需要時即可蒐集特定個人編號,以迅速、彈性地對應外在情況。 本案若經國會審議通過後,細節部分還需約時二年修改作業系統,最快預定令和7年(2025年度)施行。其他修正重點如:1.將公家機關掌握民眾銀行帳戶資訊和個人編號自動連結,此舉係為改善疫情期間之問題,未來將可使政府發放補助金及急難救助金時更為順暢;2.尚未取得個人編號卡仍可申請「資格確認書」參加社會保險或診療;3.嬰幼兒五歲前「個人編號卡」都不須附上照片等。 唯輿論有批評,在尚未經過國會及有識者充分討論前,貿然大幅擴大資料調取、使用範圍,尤其日本政府計畫將個人所有銀行帳戶都強制連結個人編號,可能讓政府更容易掌握民眾資訊,像是追蹤稅務狀況、打擊逃漏稅等。日本「個人編號法」主管機關總務省則再三保證個人編號卡晶片不會儲存稅金、年金等個人資料,即使作為醫療或健康用途時,也不會紀錄健檢結果和服用藥物等訊息。雖然仍有部分待改進處,惟日本以專法規定個人編號卡儲存資料之種類與範圍,並於該法中說明相關管理措施,仍值得我國未來密切關注。

TOP