美國衛生部門公布個人健康資訊外洩責任實施綱領

  美國健康與人類服務部(Secretary of Health and Human Services;以下簡稱HHS),於2009年4月17日公布「個人健康資訊外洩通知責任實施綱領」(Guidance Specifying the Technologies and Methodologies That Render Protected Health Information Unusable, Unreadable, or Indecipherable to Unauthorized Individuals for Purposes of the Breach Notification Requirements under Section 13402 of Title XIII (Health Information Technology for Economic and Clinical Health Act) of the American Recovery and Reinvestment Act of 2009; Request for Information;以下簡稱本綱領)。本綱領為美國迄今唯一聯盟層級之資料外洩通知責任實施細則,並可望對美國迄今四十餘州之個資外洩通知責任法制,產生重大影響。

 

  本綱領之訂定法源,係依據美國國會於2009年2月17日通過之經濟與臨床健康資訊科技法(Health Information Technology for Economic and Clinical Health Act;以下簡稱HITECH),HITECH並屬於2009年「美國經濟復甦暨再投資法」(America Recovery and Reinvestment Act;簡稱ARRA)之部分內容。

 

  HITECH將個人健康資訊外洩通知責任的適用主體,從「擁有」健康資訊之機構或組織,進一步擴大至任何「接觸、維護、保留、修改、紀錄、儲存、消除,或以其他任何形式持有、使用或揭露安全性不足之健康資訊」的機構或組織。此外,HITECH並規定具體之資料外洩通知方法,即必需向當事人(資訊主體)以「即時」(獲知外洩事件後60天內)、「適當」(書面、或輔以電話、網站公告形式)之方式通知。不過,由於通知之範圍僅限於發生「安全性不足之健康資訊」外洩,故對於「安全性不足」之定義,HITECH即交由HHS制定相關施行細則規範。

 

  HHS本次通過之實施辦法,將「安全」之資料定義「無法為第三人使用或辨識」,至於何謂無法使用或辨識,本綱領明定有兩種情形,一是資料透過適當之加密,使其即使外洩亦無法為他人辨識,另一則是該外洩資訊之儲存媒介(書面或電子形式)已被收回銷毀,故他人無法再辨識內容。

 

  值得注意的是,有異於美國各州法對於加密標準之不明確態度,本綱領已指明特定之技術標準,方為其認可之「經適當加密」,其認可清單包含國家標準與技術研究院(National Institute of Standards and Technology)公布之Special Publication 800-111,與聯邦資訊處理標準140-2。換言之,此次加密標準之公布,已為相關業者提供一可能之「安全港」保護,使業者倘不幸遭遇資料外洩事件,得主張資料已施行適當之加密保護,即無需承擔龐大外洩通知成本之衡平規定。

本文為「經濟部產業技術司科技專案成果」

相關附件
※ 美國衛生部門公布個人健康資訊外洩責任實施綱領, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=3072&no=67&tp=1 (最後瀏覽日:2026/01/30)
引註此篇文章
你可能還會想看
通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)

香港電訊管理局放寬對互連費的管制

  香港電訊管理局(OFTA)於2009年04月27日廢止了廿五年前制定的「流動網絡(即我國的行動電話/信網路)付費」規管指引。此管制規定即是明定了行動網路業者(MNO)固網業者(FNO)間的互連費收取(FMIC)模式。今後互連費的結算將以商業協議取代事前的管制性介入。   以往固網與行動網路業者互連費計算乃基於「流動網絡付費」為之,亦即行動網路業者須繳付流動網絡與固網之間所有的通話互連費用(MPNP),顯有不對稱之狀況,不利於電訊服務在匯流大環境下的公平競爭和發展。職是,電訊管理局於2007年決議將廢除該規定並設定兩年的過渡期間,讓相關業者進行調整;多數業者也在過渡期間內達成協議或共識。業者間均同意原則上採取「毋須拆帳」(Bill and Keep, BAK)的結算模式,因此也不會產生將費用轉嫁到其他電訊服務商或是終端消費者的問題。此顯示去管制化並交由市場機制決定互連費用之作法實屬可行。   以市場取代管制,短期內雖會有不確定因素可能導致爭議,惟電訊管理局也強調業者間的協議(含協商不成)不得危及公眾利益與一定的服務品質,必要時將依法介入業者間的協商程序。該局也將持續關注互連費問題之發展。

Macy's 控告前執行副總與Burlington竊取其商業機密案

  Macy's公司(以下簡稱Macy's)今(2017)年6月在美國俄亥俄州南區聯邦法院控告前執行副總Kristen Cox(以下簡稱Cox)與其競爭對手Burlington公司(以下簡稱Burlington)竊取其具有零售產業競爭優勢的商業機密。Cox原任職於Macy's擔任執行副總與北區商店總監,於今年4月離職,並至Burlington擔任商店資深副總,Macy's主張該行為造成其傳統百貨公司與其他品牌商店的不當競爭。   Cox離職時,複印了Macy's的樓層規劃策略,及內含詳細銷售資訊的財務報告。亦在未經授權的情況下,下載儲存了財務績效、產品與品牌趨勢、消費喜好和商業策略有效性評估等資料。而Burlington挖角Cox的行為,不僅使Macy's失去優秀人才,更透過Cox獲知Macy's內部營運與商業策略等營業秘密,使Burlington取得不公平競爭之優勢。   由於Cox與Macy's有簽訂禁止競業、禁止招攬與保密條款,Macy's主張前揭行為已違反契約規定與忠實、誠信義務。同時,Macy's亦申請臨時禁制令,禁止Cox持續在Burlington工作,避免對Macy's造成不可彌補的損害。   另一方面,Cox也在紐約聯邦法院針對臨時禁制令提起反訴,主張Macy's競業條款要求其2年內不得在其他主要零售業工作之限制範圍太廣,並不合理,且Cox先前工作接觸的營業秘密,與現職工作內容毫無關聯且職掌業務不同,兩家公司的營業模式也有差異,故請求可繼續在Burlington工作。惟Macy's針對Cox選擇之管轄法院提出反駁,認為有任何爭議應以合約約定的俄亥俄州為管轄法院,此案後續值得關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

Linux創辦人捍衛商標權

  Linux 創辦人 Linus Torvalds 決心捍衛自己的商標權,並堅稱其要求商標再授權是賠錢生意。   Torvalds 日前委託律師發函給澳洲的 90 家公司,要求他們取銷任何 Linux 名稱的使用,並應向 Linux 商標的授權單位 – 非營利組織 Linux Mark Institute 購買再授權。這些公司必需個別支付 200 美元到 5,000 美元,以取得 Linux 商標的再授權,導致部分開放原始碼社群成員指控 Torvalds 想藉 Linux 的成功大撈一筆。 Torvalds 否認他自己,或任何人因 Linux 商標的再授權而賺錢,因為法律成本遠高於授權費,而律師所發出的通知函,僅是維護一個商標的必要動作。   Torvalds 最近也被人指控偽善,某些開放原始碼社群宣稱他對軟體專利的批評,與他行使專利權的作為互相矛盾, Torvalds 本身並未就此回應。惟反歐盟軟體專利規定的活動領袖,最近還被譽為智慧財產領域最重要人物的 Florian Mueller 表示,商標及著作權與軟體專利不同,軟體專利是有利於反競爭陣營和無產品的敲詐者的有力工具,但著作權和商標大致上獎勵那些創造和銷售真正產品的人,不加區隔地反對智慧財產權,是違法且無意義的;其並警告「反智慧財產激進主義」對開放原始碼的形象有害,某些右翼政客也同意 Bill Gates 的觀點,認為限制智慧財產權等於是共產主義,因此開放原始碼社群有必要將自己和反智慧財產權的觀點脫鉤。

TOP