美國聯邦貿易委員會(Federal Trade Commission,FTC)鑒於近期授權學名藥(Authorized Generic,指由原專利藥廠於專利到期後自行或授權所推出之學名藥)上市申請頻率遽增,且授權學名藥專利和解協議日多之現況,自今(2009)年起,即積極展開一系列調查行動,先後於3月首度對授權學名藥和解協議案件祭出處罰裁決,並於6月公佈一份有關授權學名藥報告(Authorized Generic: An Interim Report)。
在美國授權學名藥法規(即Hatch-Waxman Act)架構下,首次提出簡易新藥審查申請取得學名藥上市許可之第一申請者(first-filer),得享有180日之市場專屬保護期間,除授權學名藥外,保護期間內其他藥廠一概不得推出相仿學名藥。
美國學名藥市場專屬保護期間之設計,原是希望藉此加速學名藥研發與上市,達到降低藥品取得價格之效,但根據FTC調查顯示,由於授權學名藥在市場專屬保護期間內依法得進入市場,於受到授權學名藥介入競爭之壓力下,第一申請者學名藥零售價格會比原先下降4.2%,經銷價格會下降6.5%,並減少該第一申請者藥廠47-51%的收入。在此背景下,越來越多第一申請者藥廠傾向採擬與原專利品牌藥廠達成延遲學名藥上市協議之策略,藉此互為其利。根據FTC統計,2004-2008年間約有25%的專利和解案件涉及授權學名藥條款,76%的對造為第一申請者學名藥藥廠,其中有25%的和解,是由授權學名藥藥廠與第一申請者藥廠就於一定期間(平均約為34.7月)不進入市場互為承諾。
FTC目前唯一的監管機制,係依據醫療照護現代化法(The Medicare Prescription Drug, Improvement, and Modernization Act of 2003,MMA),要求專利藥廠若與學名藥廠做成任何專利訴訟和解協議或相關協議時,應於協議生效10日內向FTC通報,以供FTC決定是否展開反競爭調查。FTC對於此類協議之審查上,終於今年3月有所進展,宣布必治妥(Bristol-Myers Squibb,BMS)應就其與Apotex公司間所達成專利訴訟和解協議繳交210萬美元。
本文為「經濟部產業技術司科技專案成果」
由十個國家的科學家共同努力完成的「國際水稻基因組定序計畫( IRGSP )」,其研究成果刊登於最新一期的 Nature 期刊。科學家們共同解讀水稻 12 條染色體的基因密碼,未來將根據這些密碼來控制水稻的生長和結穗,可望有助解決全球糧食問題。 依聯合國統計資料顯示,水稻是全球人口 20% 的食物能量來源,而在全球人口持續擴增之情況下, 2025 年必須提高 30% 的水稻產量,才能擁有足夠糧食。 自1998 年起,本計畫即在日本主導之下,與中華民國、韓國、英國、加拿大、美國、巴西、印度、法國與中國等國之定序實驗室進行分工、共享,定序後的 DNA 序列將放在公開序列資料庫,供研究人員使用;而本計畫已在 2002 年底完成草圖,並陸續完成彌補空隙與基因註解工作。本計畫之成果於近幾年來,已陸續協助辨識數個影響重要農藝性狀的基因,例如,影響植物生長勢、提高水稻產量的基因、改變水稻光週期、使優良栽培種得以擴展種植面積的基因、控制植株高度的基因等。 水稻基因組定序工作之完成宣告後基因組時代的正式來臨,而完成此一世紀任務之際,善用相關經驗與新知,以投入水稻的深入研究工作,將能台灣水稻及其他作物的遺傳育種研究提供實際幫助。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
新國際協定針對未經請求之行銷電話或電子訊息展開聯合行動加拿大隱私專員於2016年6月14日表示,制定支持全球電信監管機構和消費者保護機構,針對垃圾郵件和行銷騷擾電話之跨境共同合作協議。 倫敦行動計畫(London Action Plan)備忘錄(MOU)之簽署國,現已可針對打擊跨國界或逾各個國家監管部門範圍之犯罪從事者的執法行動,相互分享資訊和情報,以獲取協助。 包括加拿大隱私專員辦公室(OPC)在內,目前既已簽署方分別為:澳大利亞通訊及傳媒管理局;加拿大廣播電視和電信委員會、韓國訊息安全局(KISA)、荷蘭消費者和市場監管局(ACM)、英國資訊委員辦公室及公民諮詢局、紐西蘭內政部、南非國家消費者委員會、美國聯邦貿易委員會和聯邦通訊傳播委員會。其他國家之政府當局亦表示願提交備忘錄,以及將來可能加入之意願。 對於加拿大隱私專員辦公室而言,這項協議將有助於達成加拿大反垃圾郵件法(CASL)關於電子郵件地址蒐集和間諜軟體之調查義務與責任,並與具有相同任務之夥伴機構間,進行偵查技巧及策略之分享。 加拿大隱私專員辦公室致力於和國內及國際夥伴合作,並已與國內之CASL執法合作夥伴及其他許多國家的隱私保護機構簽訂協議。
FDA發佈人工智慧/機器學習行動計畫美國食品藥物管理署(U.S. Food & Drug Administration, FDA)在2021年1月12日發布有關人工智慧醫療器材上市管理的「人工智慧/機器學習行動計畫」(Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan)。該行動計畫的制定背景係FDA認為上市後持續不斷更新演算法的機器學習醫療器材軟體(Software as Medical Device, SaMD),具有極高的診療潛力,將可有效改善醫療品質與病患福祉,因此自2019年以來,FDA嘗試提出新的上市後的監管框架構想,以突破現有醫療器材軟體需要「上市前鎖定演算法、上市後不得任意變更」的監管規定。 2019年4月,FDA發表了「使用人工智慧/機器學習演算法之醫療器材軟體變更之管理架構—討論文件」(Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine earning (AI/ML)-Based Software as a Medical Device (SaMD) - Discussion Paper and Request for Feedback)。此一諮詢性質的文件當中提出,將來廠商可在上市前審查階段提交「事先訂定之變更控制計畫」(pre-determined change control plan),闡明以下內容:(1)SaMD預先規範(SaMD Pre-Specification, SPS):包含此產品未來可能的變更類型(如:輸入資料、性能、適應症)、變更範圍;(2)演算法變更程序(Algorithm Change Protocol, ACP):包含變更對應之處理流程、風險控制措施,以及如何確保軟體變更後之安全及有效性。 根據「人工智慧/機器學習行動計畫」內容所述,「事先訂定之變更控制計畫」構想被多數(包含病患團體在內)的利害關係人肯認,並於相關諮詢會議當中提出完善的細部建言。FDA將根據收到的反饋意見,於2021年以前正式提出有關人工智慧/機器學習上市後監管的指引草案(Draft Guidance),並持續研究提高演算法透明度、避免演算法偏見的方法。