為瞭解兒童及青少年透過行動裝置接取網路不當內容(inappropriate content)之情形,以及父母或監護人如何限制孩子使用網路設備等議題,英國通訊管理局(Office of Communications, Ofcom)委託英國第二大研究機構Ipsos MORI於2009年3-4月間,與797組7-16歲的兒童及青少年進行面對面的親子訪談,並於2009年9月公布該調查之研究結果。
根據該份兒童及青少年接取網路內容訪談的研究報告(Children’s and young people’s access to online content on mobile devices, games consoles and portable media players)顯示,分別有90%及74%的兒童及青少年透過遊戲裝置及行動電話使用接取網路,利用其他多媒體影音裝置上網的則占13%。另外有三分之二透過行動電話上網的使用者,可自由瀏覽及接取網路內容,而無任何內容分級或不當內容接取上的限制。該研究報告同時亦指出,對於使用行動電話上網的兒童及青少年,僅有10%的父母及監護人「非常關心」(major concerns)其瀏覽或接取不當網頁內容的問題;而使用遊戲裝置上網的兒童及青少年中,僅有11%的父母或監護人「非常關心」其對於接取或瀏覽不當內容之問題。對於兒童及青少年利用行動電話上網的管制議題上,父母及監護人多半透過通話及簡訊的使用量來限制兒童及青少年使用行動電話,而非直接要求兒童及青少年禁止其上網瀏覽不當的內容或教導其如何安全的使用網路。此外,就兒童及青少年本身使用網路所遇到的安全性問題上,介於11-16歲的青少年有54%表示,其需要有關如何維護隱私權及個人資料的建議與協助;而28%的青少年則提及,其需要資訊安全的建議,尤其是如何強化密碼及個人識別碼(personal identification numbers, PINs);至於7-11歲的兒童則多以「不知道」來回答調查問卷上的問題。
藉由該份研究報告數據的公開,英國政府開始針對兒童及青少年透過行動裝置使用網路之安全性問題進行研議,期望透過更多的宣導與教育,使父母及監護人更為關心兒童及青少年網路內容帶來的身心健康影響,並提昇父母、監護人、兒童及青少年對於網路使用的安全意識,以建立兒童及青少年對於網路安全的正確觀念。
本文為「經濟部產業技術司科技專案成果」
去(2005)年11月,全球幹細胞研究先驅-韓國首爾大學黃禹錫(Hwang Woo-suk)教授承認其研究有國際醫學倫理瑕疵,引發軒然大波。其後,相關的醜聞頻傳,黃教授更被控研究造假,使得原本以前瞻之胚胎幹細胞研究技術(即體細胞核轉置技術”somatic cell nuclear transfer”)獨步全球的韓國科學界,研究信譽遭受嚴重打擊。 偵辦「黃禹錫科研論文造假醜聞案」的南韓檢察當局,經連日傳訊相關人員後,正考慮對黃禹錫等四人採取司法懲處。 對於被查出不法獲得並使用科研用卵子的黃禹錫,檢方考慮依據違反「生命倫理及安全之法律」等條文予以懲處。 據指出,檢方在調查中,掌握了2004年及2005年刊登在「科學」雜誌上的科研論文,黃禹錫等人捏造體細胞複製幹細胞,和為病患複製培育胚胎幹細胞的科研數據,矇騙了整個科學界。調查顯示,黃禹錫去年十一月檢驗幹細胞的遺傳基因(DNA)指紋之前,似乎真的不曉得根本就不存在為病患量身打造複製培育胚胎幹細胞的事實。但檢方卻證實黃禹錫確實指示屬下研究員,將部分照片等科研數據和資料,自我膨脹等造假的事實。 由於生醫研究給許多病患帶來新的治療希望,因此其通常會以實際行動(即自願捐贈研究用檢體、協助經費募集等)表達支持。惟研究瑕疵或造假則會讓病患及一般民眾認為遭受欺騙,進而影響其未來捐贈檢體或以受試者身份參與生醫研究之意願。可見生醫倫理並不僅是道德呼籲,也是生醫研究能否順利進行、生醫研究能否生根發芽的重要基石。 黃禹錫案之相關報導可參見 The Economists, December 3 rd 2005, p. 71; The Economist, December 24 th 2005, p. 109-110
人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例 資訊工業策進會科技法律研究所 蔡宜臻法律研究員 2018年11月27日 壹、事件摘要 美國係推動人工智慧用於醫療服務的領航國家,FDA轄下的數位健康計畫(Digital Health Program)小組負責針對軟體醫療器材規劃新的技術監管模式,在過去五年中,該計畫發布了若干指導文件 ,嘗試為醫用軟體提供更為合適的監督管理機制。但由於指導文件並非法律,監管的不確定性依舊存在,因此近兩年 FDA推動修法並做成多項草案與工作計畫,望以更具約束力的方式回應軟體醫療器材最新技術於臨床之適用。當中最為重要的法制變革,便是2016年底國會通過之《21世紀治癒法》(21st Century Cures Act)。該法重新定義了醫用軟體的監管範圍,一般認為是對人工智慧醫用軟體的監管進行鬆綁,或有助於人工智慧醫用軟體的開發與上市。然而在新法實施近兩年以來,實務上發現人工智慧的技術特質,會導致在進行某些「臨床決策支援之人工智慧軟體」是否為醫療器材軟體之認定時,產生極大的不確定性。對此FDA也於2017年12月作成《臨床與病患決策支持軟體指南草案》(Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration),望能就部份《21世紀治癒法》及其所修正之《聯邦食品藥物化妝品法》(Federal Food, Drug, and Cosmetic Act, FD&C Act)[1]裡的規範文字提供更為詳細的說明。 本文望能為此項法制變革與其後續衍生之爭議進行剖析。以下將在第貳部分重點說明美國2016年頒布的《21世紀治癒法》內容;在第參部份則針對人工智慧技術用於醫療臨床決策支援所發生之爭議進行分析;最後在第肆部份進行總結。 貳、重點說明 2016年12月美國國會頒布了《21世紀治癒法》,在第3060節明確界定了FDA對數位健康產品(Digital Health Products)之管轄範圍,將某些類型的數位健康產品排除在FDA醫療器材(medical device)定義之外而毋須受FDA監管。此規定亦修正了美國《聯邦食品藥物化妝品法》第520節(o)項有關FDA排除納管之軟體類別之規定。 根據新修正的《聯邦食品藥物化妝品法》第520節(o)(1)項,美國對於醫用軟體的監管範疇之劃設乃是採取負面表列,規定以下幾種類型的軟體為不屬於FDA監管的醫用軟體: 行政管理目的[2];或 目的在於非關診斷、治療、緩解、預防或病症處置之健康維持或健康生活習慣養成[3];或 目的在於進行電子化的個人健康紀錄[4];或 目的用於傳輸、儲存、格式轉換、展示臨床研究或其他裝置資料與結果[5];或 同時符合以下四點之軟體: (1)不從體外醫療器材或訊號蒐集系統來讀取、處理或分析醫療影像或訊號[6]。 (2)目的在於展示、分析或印製病患醫療資訊,或其他醫療訊息(例如:偕同診斷之醫療研究、臨床處置指南)[7]。 (3)目的在於替醫療專業人員就疾病或症狀之預防、診斷或處置提供支持或臨床建議[8]。 (4)使醫師在使用該軟體時尚能獨立審查「臨床建議產生之基礎」,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議[9]。 雖然大多數被排除的類別相對無爭議,但仍有一部分引起法律上不小的討論,即《聯邦食品藥物化妝品法》第520節(o)(1)(E)項所指涉的某些類型之臨床決策支援軟體(Clinical Decision Support Software,以下簡稱CDS軟體)。 CDS軟體係指分析數據以幫助醫療手段實施者(例如:醫師)做出臨床決策的軟體。多數以人工智慧為技術基礎的醫療軟體屬於此一類型,比方病理影像分析系統。根據《21世紀治癒法》與《聯邦食品藥物化妝品法》,CDS軟體是否被排除在FDA的管轄範圍之外,取決於該軟體是否「使醫師在使用該軟體時尚能獨立審查『臨床建議產生之基礎』,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議」[10]。若肯定,則將不被視為FDA所定義之醫療器材。為使此一規定更加明確,FDA於2017年12月8日發布了《臨床與病患決策支持軟體指南草案》,該指南草案針對如何評估軟體是否能讓醫師獨立審查臨床建議產生之基礎進行說明。FDA表示該軟體至少要能清楚解釋以下四點[11]: 該軟體功能之目的或用途;及 預期使用者(例如超音波技師、心血管外科醫師);及 用於產生臨床建議的原始資料(例如患者的年齡和性別);及 臨床建議產生背後之邏輯或支持證據 後續方有機會被FDA認定係令醫療專業人員使用該軟體時,能「獨立審查」臨床建議產生之基礎。換言之,指南草案所提的四點,為FDA肯認醫師在使用軟體時尚能「獨立審查」之必要前提。除此之外,指南草案尚稱預期使用者必須能自己做成與軟體相同之判斷,並且要求「用於生成臨床建議與演算邏輯的原始資料必須可被預期使用者辨識、近用、理解,並為公眾可得」[12],進而方有機會符合《聯邦食品藥物化妝品法》第520節(o)(1)(E)(iii)之規定;若該軟體亦同時符合第520節(o)(1)(E)之其他要件,則有望被劃分為非醫療器材而不必受FDA監管。 由於規範內容較為複雜,指南草案亦提供案例說明。比方若一糖尿病診斷軟體是由醫生輸入患者參數和實驗室測試結果(例如空腹血糖、口服葡萄糖耐量測試結果或血紅蛋白A1c測試結果),並且該裝置根據既定臨床指南建議患者的病情是否符合糖尿病的定義,可被FDA認定為「非醫療器材」[13];而諸如分析電腦斷層、超音波影像之軟體,則仍維持屬於醫療器材[14]。 另需注意的是,《聯邦食品藥物化妝品法》在第520節(o)(3)(A)(i)項亦建立「彌補性納回(claw-back)」機制,FDA需遵守通知評論程序(notice-and-comment process)以便及時發現軟體可能對健康造成嚴重危害的風險,並隨時將之納回監管範疇中。同時FDA每兩年必須向國會報告醫療器材軟體的實施經驗[15]。 參、事件評析 《21世紀治癒法》頒布至今兩年,FDA已核准多個以人工智慧為技術核心的軟體,例如在2018年2月13日通過能自動偵測可疑的大血管阻塞(large vessel occlusion, LVO),並迅速通知醫師病人可能有的中風危險的臨床決策支援軟體:Viz.AI Contact application;又比如於2018年4月11日通過利用演算法分析由視網膜攝影機(Topcon NW400)所獲得的影像,快速篩檢糖尿病病人是否有必須由專業眼科醫師治療的視網膜病變的IDx-DR。 然而,在CDS軟體以人工智慧為技術核心時,現有的法規與監管框架依舊有幾點疑慮: 一、「理解」演算法? 根據新修正之《聯邦食品藥物化妝品法》,如果CDS軟體欲不受FDA監管,醫師的決策必須保持獨立性。目前規定只要該醫療產品「企圖」(intended to)使醫師等專業人員理解演算法即可,並不論醫師是否真正理解演算法。然而,若FDA肯認理解演算法對於執行醫療行為是重要的,那麼當CDS係基於機器學習產生演算法時,具體該如何「理解」就連開發者本身都未必能清楚解釋的演算法?有學者甚至認為,CDS軟體是否受到FDA法規的約束,可能會引導至一個典型的認識論問題:「我們是怎麼知道的?(How do we know?)」[16]。對此問題,我們或許需要思考:當醫師無法理解演算法,會發生什麼問題?更甚者,未來我們是否需要訓練一批同時具備人工智慧科學背景的醫療人員?[17] 二、如何要求演算法透明度? 指南草案所提之「清楚解釋臨床建議產生背後之邏輯或支持證據」以及資料來源為公眾可得、醫生對演算法使用的資料來源之近用權限等,被認為是FDA要求廠商應使CDS軟體之演算法透明[18]。但根據FDA指南草案公告後得到的反饋,醫療軟體廠商對此要求認為並不合理。廠商認為,應該從實際使用效益來審視人工智慧或機器學習軟體所提出的臨床建議是否正確,而不是演算法是什麼、怎麼產生[19]。 三、醫療專業人員之獨立專業判斷是否會逐漸被演算法取代?未來醫療軟體廠商與醫療專業人員之責任該如何區分? FDA目前的法規與指南並未直接回應此二問題,惟其對於不被列管之CDS軟體之規定係需使醫師並非主要依賴該軟體提供之臨床建議、醫師能自己做成與軟體相同之判斷。由反面解釋,即FDA肯認部份CDS軟體具備與醫師雷同之臨床診斷、處置、決策之功能,或能部份取代醫師職能,因此需受FDA監管。是故,醫師之專業能力與人工智慧演算法相互之間具有取代關係,已是現在進行式。惟究竟醫師的判斷有多少是倚靠人工智慧現階段尚無法取得量化證據,或需數年時間透過實證研究方能研判。往後,醫療軟體廠商與醫師之責任該如何區分,將會是一大難題。 肆、結語 隨著醫療大數據分析與人工智慧技術的發展,傳統認知上的醫療器材定義已隨之改變。雖然硬體設備仍然在診斷、治療與照護上扮演極為重要的角色,但軟體技術的進步正在重新改寫現代醫療服務執行以及管理模式。這些新產品及服務為醫療器材市場帶來活水,但同時也形成新的監管議題而必須採取適當的調整措施。美國FDA針對近年來呈爆炸性發展的醫療軟體產業不斷調整或制定新的監管框架,以兼顧使用者安全與新技術開展,並於2016年通過了極具改革意義的《21世紀治癒法》,且以此法修正了《聯邦食品藥物化妝品法》。 然而,新法實施後,關於個別醫用軟體是否納為不受FDA監管的醫療器材仍有法律認定上的灰色空間。舉例而言,倍受矚目的以人工智慧為核心技術的CDS軟體,在新法框架下似乎可能存在於監管紅線的兩側。根據新修正之《聯邦食品藥物化妝品法》,一CDS軟體是否屬於醫療器材軟體,關鍵在於醫師能否「獨立審查」從而「非主要依賴」軟體所提供之臨床建議。也由於此要件概念較為模糊,FDA後續在2017年發布《臨床與病患決策支持軟體指南草案》為此提供進一步解釋,然而仍無法妥適處理人工智慧機器學習技術所導致的演算法「該如何理解?」、「透明度該如何認定?」等問題。更甚者,從整體醫療服務體系納入人工智慧協助臨床決策診斷之趨勢觀之,未來醫療專業人員的獨立判斷是否會逐漸被演算法取代?未來人工智慧軟體與醫療專業人員之責任該如何區分?都是醞釀當中的重要議題,值得持續關注。 [1] 21 U.S. Code §360j [2] FD&C Act Sec. 520(o)(1)(A) [3] FD&C Act Sec. 520(o)(1)(B) [4] FD&C Act Sec. 520(o)(1)(C) [5] FD&C Act Sec. 520(o)(1)(D) [6] FD&C Act Sec. 520(o)(1)(E) [7] FD&C Act Sec. 520(o)(1)(E)(i) [8] FD&C Act Sec. 520(o)(1)(E)(ii) [9] FD&C Act Sec. 520(o)(1)(E)(iii) [10] “Enabling such health care professionals to independently review the bases for such recommendations that such software presents so that it is not the intent that such health care professional rely primary on any of such recommendations to make clinical diagnosis or treatment decisions regarding individual patient.” FD&C Act, Sec. 520(O)(1)(E)(iii) [11] FOOD AND DRUG ADMINISTRATION[FDA], Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration (2017), .at 8 https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm587819.pdf (last visited Sep. 21, 2018) [12] 原文為 “The sources supporting the recommendation or underlying the rationale for the recommendation should be identified and easily accessible to the intended user, understandable by the intended user (e.g., data points whose meaning is well understood by the intended user), and publicly available (e.g., clinical practice guidelines, published literature)”, id, at 8 [13] FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [14]FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [15] 21th Century Cures Act, Sec. 3060(b) [16] Barbara J. Evans & Pilar Ossorio, The Challenge of Regulating Clinical Decision Support Software after 21st Century Cures. AMERICAN JOURNAL OF LAW AND MEDICINE (2018), https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3142822_code1078988.pdf?abstractid=3142822&mirid=1 (last visited Sep. 21, 2018) [17] Id. [18] Gail H. Javitt & J.D., M.P.H., ANESTHESIOLOGY, Regulatory Landscape for Clinical Decision Support Technology (2018), http://anesthesiology.pubs.asahq.org/article.aspx?articleid=2669863 (last visited Sep. 21, 2018) [19] REGULATIONS.GOV, Clinical and Patient Decision Support Software; Draft Guidance for Industry and Food and Drug Administration Staff; Availability(Dec. 8, 2017) https://www.regulations.gov/docketBrowser?rpp=25&po=0&dct=PS&D=FDA-2017-D-6569&refD=FDA-2017-D-6569-0001 (last visited Sep. 25, 2018)
日本政府擬建構自動駕駛實驗資料收集和共享體制日本內閣下設之日本經濟再生本部(日本経済再生本部),為實現2017年6月於「未來投資戰略2017」所提出之建立實驗資料共享體制政策,於2017年8月31日起舉辦自動駕駛官民協議會(自動走行に係る官民協議会),邀請政府相關部門及民間專家等關係人士,檢討自動駕駛實驗結果、實驗資料之共享,以及根據民間需求進行實驗計畫之工程管理等制度的整備方向,預計於年內針對複雜的駕駛環境制定共通指標,以釐清哪些資料是應收集之實驗資料,建構自動駕駛實驗資訊共享、收集體制。自動駕駛官民協議會預計在未來幾次會議中,針對應收集之實驗資料、標準格式、體制、實驗計畫的進程管理、官民合作事項等進行討論,並將在未來投資會議中報告檢討結果,其結果將與明年度之成長戰略一同反映於「官民ITS‧構想藍圖」(官民ITS構想・ロードマップ)中。
Ofcom第八次電信與付費電視申訴報告Ofcom在今(2013)年3月公佈「2012年第四季電信與付費電視申訴報告書」(Telecoms and Pay TV Complaints Q4 2012),以履行2003年通信法(Communications Act 2003)第26條規定:Ofcom應公布通訊資訊與建議於消費者。是故,為維護消費者之權益,並促進市場競爭,Ofcom從2011年4月起每季公佈「電信申訴報告書」 (Telecoms Complaints);同年10月修訂為「電信與付費電視申訴報告書」(Telecoms and Pay Tv Complaints)。這份報告書不僅協助消費者選擇較好供應商,更意在促進業者服務品質,而從幾次報告書中顯示,業者們被投訴量確實持續下降,可見效果斐然。 Ofcom選擇市占率超過4%、且每月被投訴超過30次的市話、固網寬頻、行動通信服務(月租),與付費電視為調查對象,以維護統計信度。當消費者申訴具有綑綁式服務(bundled services)業者,則視其申訴是否涵蓋多種服務,以Sky同時具有電話、網路服務為例,當民眾申訴廣告不實後,則此申訴僅被記錄於網路服務。由於,民眾申訴範圍相當廣泛而難以統整,Ofcom僅向外界公布業者被投訴的次數,且有下述研究限制: 1.Ofcom僅蒐集本身受理的申訴數據,而其他組織、供應商所受理的,一概不納入報告書。 2.Ofcom雖力求數據的合理性,但不會檢驗消費者投訴的真實性。 3.當Ofcom倡導某些政策時(例如打及廣告不實),可能會導致某些業者申訴量提高。 在這次報告中,各領域被投訴最多的業者如下:Talk Talk於市話服務被投訴最多,被投訴的理由多數為服務缺失與相關服務爭議。Orange則在固網寬頻、行動通信服務(月租)受到最多申訴,其原因是Orange採取民眾購買寬頻服務後,方得再取得免費網路,以取代原本免費網路的提供。在付費電視上,則是BT Vision受到最多申訴,而內容多為提供服務與處理申訴之缺失。Ofcom期以公佈這些資訊,讓消費者得於每個領域選擇最好的供應商。