針對法國知名品牌LVMH控告搜尋引擎大廠Google以其商標作為關鍵字,販售給網路廣告業者,使得當使用者鍵入商標關鍵字搜尋時,廣告業者之商業訊息及其網址會呈現在搜尋結果中,而侵害LVMH商標權的訴訟案中,歐洲法院佐審官(advocate General)Poiares Maduro提出了法律意見書。
在該意見書中,其認為Google允許廣告業者選擇和商標有關的關鍵字並不構成商標侵權,選擇關鍵字僅是Google和廣告業者二造間的內部活動,並沒有對公眾販賣和商標相同或類似的產品或服務,非商標法所謂之使用。另外,根據關鍵字搜尋結果而呈現廣告業者之網址,也不會造成消費者對原始產品或服務混淆的風險。網際網路的使用者知道在Google搜尋引擎做搜尋時,並非只有商標擁有者的網址會呈現,甚至有時他們並不是尋找商標擁有者的網址。消費者會依據廣告內容及造訪廣告網址來認定產品或服務的來源,不是僅依據隨商標關鍵字而呈現出的廣告就作出來源的認定。
該佐審官的法律意見雖然對歐盟法院沒有拘束力,但該法院在大部分的案件中仍會依循該意見,通常在該意見提出後大約六個月會作出裁判。
加州聯邦中區地方法院於2014年6月在Jancik v. Redbox Automated Retail, LLC (No. SACV 13-1387-DOC, 2014 WL 1920751 (C.D. Cal. May 14, 2014))一案中,判決影片自動出租機公司Redbox勝訴。法院認為,雖然Redbox在其經營的線上影視串流服務中未提供隱藏字幕(closed captioning),導致聽障者無法藉由閱讀影片字幕來了解劇情,但「網站」非美國身心障礙者法(Americans with Disabilities Act,下稱ADA)第三章「民間事業體所營運之公共設施與服務」中所稱「公共設施」(public accommodation),即無障礙建置範疇不包含提供公眾商品與服務的「網站」,因此業者不須提供具可及性之商品,例如:附字幕影片。法院認為第三章並未就公共設施中商品特色和內容有所規範,因此業者無義務改善其他影片存貨規格,使其能為身障者所觀看;又Redbox線上影視串流服務僅有網路通路,依ADA文義解釋,網站亦非屬於公共設施,無提供無障礙建置之必要。 本案與第一巡迴上訴法院在NAD v. Netflix案見解大相逕庭,該案以「美國國家聽障人士協會」(National Association of the Deaf, NAD)為首之公協會,集體對美國知名線上串流影視節目網站Netflix提起訴訟,控告其線上影視節目未提供隱藏字幕,使得聽障人士無法觀看該影片內容,法院判決該平臺網站屬於「公共設施」,依ADA第302條規範,身心障礙者有權利享受公共設施之設備,不得因殘障而受差別對待。有關網站是否屬於ADA第三章所稱公共設施,而使得私法人有改善網頁無障礙技術義務,仍有待觀察。
英國BSI發布自駕車發展與評估控制系統指引英國標準協會(British Standards Institution, BSI)於2020年4月30日發布「PAS 1880:2020:自駕車控制系統開發及評估指引(PAS 1880:2020: Guidelines for developing and assessing control systems for automated vehicles)」,該文件提供一系列的準則,提供自駕車研發者於發展控制系統時可安全有效的進行布建;本文件所涵蓋之自駕車類型主要為於(研發者)所設計及規劃之特定運行範圍內(operational design domain,以下簡稱ODD)下不需人工介入即可運送旅客與貨物者。 指引中就自駕車之控制系統設計進行分類,並提出研發者應針對不同目的與重點進行說明以及相關應遵循事項,其中應包含以下項目: 任務:自駕車之任務應被定義。 ODD:自駕車之ODD應被定義並且應可涵蓋其所有執行任務之面向。 感知運作:於任務中感知運作系統執行時,自駕車應可判斷其是否遵循ODD之範圍,並可提供相關資料予決策系統。 決策:當決策系統執行時,自駕車應可實施所有為達成任務所決策規劃之活動。 控制運作:當控制運作系統執行時,自駕車應可於正常情況下控制其動作以完成任務,並可於無法執行正確行動時採取合適之措施。 監控運作:當監控運作系統執行時,於整個任務過程中,自駕車應可監控其自身之運作。 人身安全、系統安全與有效(Safe, secure and effective):自駕車應可於所有時刻皆保持運作之人身安全、系統安全性與有效性。
藥品監管機構負責人組織與歐洲藥品管理局聯合巨量資料指導小組發布2021-2023年工作計畫,提高巨量資料於監管中之效用藥品監管機構負責人組織(Heads of Medicines Agencies, HMA)與歐洲藥品管理局(European Medicines Agency, EMA)聯合巨量資料指導小組(HMA-EMA joint Big Data Steering Group, BDSG)於2021年8月27日發布「巨量資料指導小組2021-2023年工作計畫」(Big Data Steering Group Workplan 2021-2023),將採以患者為焦點(patient-focused)之方法,將巨量資料整合至公衛、藥物開發與監管方法中,以提高巨量資料於監管中之效用。指導小組將利用「資料分析和真實世界訊問網路」(Data Analysis and Real World Interrogation Network, DARWIN EU)作為將真實世界資料整合至監管工作之關鍵手段; DARWIN EU諮詢委員會(Advisory Board)已於2021年建立,DARWIN EU協調中心(Coordination Centre)亦將於2022年初開始運作。 為確保資料品質與代表性,未來工作計畫將與「邁向歐洲健康資料空間–TEHDAS」(Towards A European Health Data Space – TEHDAS)合作,關注資料品質之技術與科學層面,並將於2022年提出第一版「歐洲監管網路資料品質框架」(data quality framework for the EU Regulatory Network)、「真實世界資料來源選擇標準」(criteria for the selection of RWD sources)、「詮釋資料優良規範指引」(metadata good practice guide)、「歐盟真實世界資料公用目錄」(public catalogue of European RWD)等規範。 此外,工作計畫將於2021年底舉辦「學習計劃」(learnings initiative)研討會,討論包括EMA人用藥品委員會(Committee for Medicinal Products for Human Use, CHMP)對於真實世界證據於藥品上市許可申請(Marketing Authorization Application, MAA)、適應症擴張(extensions of indications)之審查,以及過去真實世界資料分析試點於委員會之決策等議題,以利後續指引之修正。 最後,工作計畫預計於2021年底完成「健康照護資料二次使用之資料保護問與答文件」(question and answer document on data protection in the context of secondary use of healthcare data),以指導利益相關者與促進公共衛生研究,並發布由歐盟監管網路(EU Regulatory Network)同意之對於藥品監管(包括巨量資料)之資料標準化戰略。
日本政府公布「日本再興戰略2016 (草案) 」,並以實現第四次工業革命為主軸日本首相官邸之「日本經濟再生本部」於2016年5月19日召開第27次「產業競爭力會議」,並於該會議上提出「日本再興戰略2016(草案)」進行討論。再興戰略以實現「第四次工業革命」為主軸,透過活用IoT、巨量資料、人工智慧(AI)、機器人等技術,目標在2020年創造出30兆日圓的市場附加價值。為了推動相關政策,今年夏天將會成立具備統整指揮機能之「第四次工業革命官民會議」,該會議下並設置「人工智慧技術戰略會議」、「第四次工業革命 人才育成推動會議(暫定名稱)」,以及「機器人革命實現會議」。 「日本再興戰略2016(草案)」,特別對於製造業相關之議題提出討論。再興戰略指出,日本相較他國,雖然在網路空間的「虛擬資料(バーチャルデータ)」平台方面發展較晚,然而在健康資料、交通資料、工廠設備運轉等「即時資料(リアルデータ)」領域有潛在的優勢,因此為了讓日本的企業超越目前的框架,將以建構取得「即時資料」之平台為目標。綜整「日本再興戰略2016(草案)」具體重要政策方面如述,包括: (1)日本政府認為,第四次工業革命普及的關鍵,在於根據中小企業的現場需求,導入IT及機器人等技術,因此將請機器人專家支援,在兩年內將技術導入1萬家以上的企業。 (2)人工智慧的研發係屬第四次工業革命的基礎技術,因此要建構提供AI軟體模組工具,以及推動標準化的完善環境,並於今年內提出研發及產業化的具體施政內容,並留意開發人工智慧的透明性、控制可能性等原則及國際動向。 (3)關於產業活用區塊鏈技術(Block chain)、整備制度促進資料流通等議題,預計於今年秋天提出對應方針。 (4)於「機器人革命倡議協議會」檢討製造業之商業模式改革、與德國共同提案國際標準化及先進案例。 (5)於2020年以前,運用傳感器蒐集資料,創造50件以上,工廠和總公司間,企業和企業間等超越組織框架的先進案例,並提出國際標準。 (6)進行智慧工廠實證,建構具備AI技術的自動化模組以及智慧的產業保全。此外,為超越既有企業間的框架,將於機器設備進行資料共有及活用的實證,並根據實證結果修正相關制度。 (7)整備促進資料利用的環境,特別著重能夠蒐集、分析的資料平台,形成健全的資料流通市場。因此,為釐清彼此的權利義務關係,今年內個人資料保護委員會將提出相關交易指針。 (8)強化智財紛爭處理系統,將徵詢產業界的意見,於今年提出法制改革的結論。 (9)強化中小企業的智財戰略以及必要審查體制,協助其申請及活用專利權,預計明年度開始擴大支援業務,負責機關為獨立行政法人工業所有權資料‧研修館(INPIT)。