Eolas,一家由加州大學資助成立的軟體技術研發公司,於1999年控告微軟侵犯了一個關於瀏覽器技術的專利 – US 5,838,906。該專利所揭露的技術讓微軟的IE瀏覽器得以嵌入互動式內容的外掛(plug-in)程式。2003年,美國芝加哥法院認定微軟侵犯906專利,並判決微軟必需賠償Eolas及加州大學5.21億美元。2007年,微軟終於暫時與Eolas達成和解,但兩家公司都不願透漏和解的內容。
美西時間2009年10月6日上午,Eolas大動作地控告包含科技業的Adobe、Amazon、Apple、eBay、Google、Sun Microsystems、Texas Instruments、Yahoo、YouTube,以及非科技業的Citigroup、JPMorgan Chase …等共22家公司,侵犯上述906專利以及其所衍生的US 7,599,985專利。Eolas表示:「985專利是 906專利的延續,其所揭露的技術能讓網站透過附加元件和Ajax網頁開發技術的使用,為其線上服務加入完全互動式的嵌入應用軟體。」
此外,Eolas總裁Michael Doyle博士也表示:「我們只想獲得公平的對待。本公司在15年前就已經研發並廣泛的展示這些技術。使用本公司的技術來營利且未付出合理報酬的情形對本公司並不公平。」 至於被控告的大多數公司目前都尚未做出正式的回應。
全國能源會議於六月二十日登場,面對京都議定書生效壓力,新舊工廠未來究竟應如何減量,備受企業高度關切,經濟部已擬出政策規劃,將自二○○七年開始推動既設工廠溫室氣體減量措施,至二○一五年減量一○%(二千年為減量基準年)。 工業部門溫室氣體排放量占全國排放總量五五%,但占全國 GDP 比例逐漸減少,工業局計畫在全國能源會議中,提出多項溫室氣體減量措施。 為建立產業減量機制,工業局規劃出短、中、長期三階段減量計畫外,並提出攸關溫室氣體查核機制的能源效率計算模式,藉由會議尋求共識後,逐步落實。 據瞭解,能源效率計算機制因各國規劃採取的措施不同而所有差異,有國家採用每人耗能量為計算基準,也有以生產產品所需耗能量計算,或是每創造單位國內生產毛額所需耗用的能源計算(即能源密集度)。 工業局認為,以能源密集度做為我國工業查核指標,可顯示能源消費與該產業的邊際效應變化趨勢,有助於落實工業部門減量策略的執行,因此建議我國未來在產業溫室氣體排放查核機制上,以能源密集度為查核指標。 至於,在溫室氣體減量機制上,工業局規劃我國自二○○七年時推動既設工廠實施溫室氣體減量措施,並至二○一五年時達到溫室氣體排放密集度降低一○%的目標,而其減量的基準年為二千年;在新設廠方面,則以全球一○%標竿能源效率製程的排放密集度擬訂排放標準加以審議。
性隱私內容外流風波-從美國立法例論我國違反本人意願散布性隱私內容之入罪化 澳洲開放醫療性複製去(2006)年12月6日,澳洲眾議院核准之前參議院所通過的人類胚胎複製解禁法案,此法案由前健康部長亦是現任參議員Kay Patterson所提出,由於投票所涉及議題過於敏感,故各政黨開放其所屬議員自由投票,最終結果為贊成82票,反對62票。解禁法案主要是准許醫療性複製,但複製出來的胚胎不得植入子宮,且需於14天內被破壞或銷毀。另外,Kay Patterson表示,解禁法案將於健康及科學主管機關草擬卵子捐贈與研究授權指導方針的六個月後,開始施行。最後,此一修法應於3年後接受檢視。 目前澳洲與複製技術相關之法規有:人類複製禁止法(Prohibition of Human Cloning Act 2002)及人類胚胎研究法(Research Involving Human Embryo Act 2002)。人類複製禁止法顧名思義,即不允許任何形式的人類複製,而禁止項目包括:製造人類複製胚胎、將人類複製胚胎植入人類或動物體內、進出口人類複製胚胎………等等。前述修法通過後,澳洲國內將可進行為醫療目的之複製胚胎行為,為其國內胚胎幹細胞發展開一扇窗。 近年來,由於複製技術及胚胎幹細胞研究正逐漸成為顯學,加上醫療應用潛力極大,故即使於社會輿論壓力下,仍有許多國家修立法准許醫療性複製,包括:瑞典、英國、韓國等等。澳洲這次的修法,是否代表全球對於複製技術規範之態度有了某種程度之轉變?值得持續觀察。
美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。