美國和歐盟合作推動統一優良臨床試驗規範

  美國聯邦食品藥物管理局(U.S. Food and Drug Administration)和歐洲醫藥局(European Medicines Agency)在2009年7月31日共同公佈了一項名為優良臨床試驗行動(Good Clinical Practices Initiative)的合作計畫,期能藉由該計畫,使得不論是在美國或歐盟,所有臨床試驗之執行,都有遵守相同且適當的規範。

 

  在醫藥品上市申請的實務中,因為大部份的醫藥品都會企圖向廣大的歐美市場扣關,同樣的臨床試驗通常也會分別提交到兩地的醫藥品上市許可申請程序中。故若兩地主管機關可以合作訂出統一的優良臨床試驗規範,則可避免因重複審查所造成的資源浪費,申請者也可以因為統一的規範而加速其在兩地審查的程序,且在跨國資訊交流整合下,也可為臨床試驗研究的參與者提供更好的安全基礎。

 

  此次美國聯邦食品藥物管理局,和歐洲醫藥局合作之優良臨床試驗行動的幾個主要目標如下: 一、定期交換有關優良臨床試驗之實務操作資訊:交換的資訊包括(1)彼此的優良臨床試驗(Good Clinical Practices, GCP)查核計畫,以了解有那些臨床試驗或地點是對方會去查核的,就不需要重覆查核;(2)彼此受理的上市申請案件中,有關GCP的如科學上的建議或上市申請的結果等;以及(3)彼此執行GCP查核之結果。二、共同執行優良臨床試驗審查:藉此了解對方之GCP查核程序,並進而信賴彼此之程序,也藉由共同執行時之交流,提昇彼此查核之技巧,及精進查核之程序。 三、合作增進優良臨床試驗規範:藉由對彼此GCP相關法規、指導原則、和政策等的交流及了解,找出現有規範中可予以改進之處,以增進臨床試驗研究的品質。

 

  自2009年9月1日起,此項合作行動將首先開始一個為期18個月的先期行動,在此先期行動結束後,兩主管機關將會共同發布一份包含其整體行動計畫,及雙方就各自既有法規或程序應予以調整部分。

相關連結
相關附件
※ 美國和歐盟合作推動統一優良臨床試驗規範, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=3166&no=0&tp=1 (最後瀏覽日:2025/11/28)
引註此篇文章
你可能還會想看
美國食品藥物管理局(FDA)為落實食品安全現代法案公布食品安全查檢與風險管理相關規定

亞馬遜啟動「零計劃」與「透明度計劃」打擊盜版

  於平台上販賣盜版商品,長期困擾著許多電子商務平台。做為美國電子商務龍頭之一的亞馬遜,近年也遭受外界指責未盡防止盜版的責任。儘管亞馬遜聲稱已盡力處理廠商的盜版申訴,但外界對於亞馬遜怠於處理甚至靠盜版牟利的譴責,卻未見停歇。   為解決盜版猖獗的問題,亞馬遜於2019年年初推出了以「零計劃」(Project Zero)為名的免費品牌服務,這項計畫包含了幾個項目,其一是透過機器學習掃描平台中可能的仿冒商品,並依據廠商提供的品牌資料主動移除可疑的盜版項目;其二,提供廠商自行移除仿冒商品的工具,廠商無須向亞馬遜提出申訴即可自行下架盜版商品;第三,透過廠商在商品上放置特殊編碼,讓亞馬遜可以在出貨時就檢驗其是否為正版,以即時遏止盜版商品的送到消費者手中。「零計劃」目前僅提供部分受邀品牌參與,同時,即使亞馬遜宣稱會採取適當檢驗程序,但該計劃是否會賦予大品牌過多權力,壓迫小廠商或二手商品的發展,導致不公平競爭的問題,仍有待觀察。   除「零計劃」之外,今年(2019)年初 亞馬遜也擴大了自2017年開始運作的「透明度」(Transparency)的付費計劃。該計劃的運作,是由亞馬遜給予註冊品牌廠商一個或數個由亞馬遜研發的二維條碼,廠商有責任將其施用在其指定的商品上,以一方面讓亞馬遜在出貨該商品時透過該條碼來驗證商品來源與真實性 ,二方面買家也可透過亞馬遜提供的APP掃描條碼來確認其商品是否為正品(此為零計劃中所未包含的功能)。目前該計劃已在北美、德國、法國、英國、義大利、西班牙與印度等國實施。

何謂德國「EXIST補助計畫」?

  德國在2000年以後便將聯邦政府補助的其中一個方向集中在鼓勵科技創業,主要推動機關為聯邦教育暨研究部(Bundesministerium für Bildung und Forschung, BMBF)與聯邦經濟暨能源部(Bundesministerium für Wirtschaft und Energie, BMWi)。其中BMWi的EXIST計畫訴求建立一個科技創業有善的環境,並分三項子計畫運作:EXIST創業文化計畫(EXIST-Gründungskultur),EXIST創業補助計畫(EXIST-Gründerstipendium),EXIST研發成果移轉計畫(EXIST-Forschungstransfer)。   其中,EXIST創業文化計畫著重於在學研機構內塑造創業文化,誘發學研機構創業潛力與企業家性格;EXIST創業計畫則是鎖定學研機構內的個人(科學家、研究生、大學生),希望透過對這些個人的生活補助,使其商業發想可化為營運計畫書(Businessplan),進而開發成為商品或服務;EXIST研發成果計畫則是透過經費補助,鼓勵學研機構內的研究團隊利用設立衍生公司方式運用研發成果,在創業前的籌備階段與公司設立初期導入專業團隊,協助評估相關的創業理念、經營模式、財務評估與資金運用等規劃是否妥適,使公司創立的籌備更為妥善且禁得起市場考驗。

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

TOP