歐洲資料保護監督官12月7日發表正式意見,針對歐盟執委會就AFSJ大型資訊技術系統設立作業管理機構之立法計畫,提出隱私保護法律要求

  歐洲資料保護監督官(European Data Protection Supervisor, EDPS)於2009年12月7日,針對歐盟執委會(European Commission)近年所提出關於設立歐盟「自由、安全及司法領域」(area of freedom, security and justice, AFSJ)大型資訊技術系統(IT System)作業管理機構之立法計畫,基於個人資料保護之立場提出正式法律意見。如此一立法計畫順利通過,該機構預計將擔負起包括「申根資訊系統」(Schengen Information System, SIS II)、「簽證資訊系統」(Visa Information System, VIS)、「歐洲指紋系統」(European Dactylographic System, Eurodac)及其他歐盟層級之大規模資訊技術系統之作業管理(operational management)任務。

 

  根據EDPS首長Peter Hustinx表示,由於前述各項系統之資料庫中均包含諸如護照內容、簽證及指紋等大量敏感個人資料,因此儘管設立單一之作業管理機構,可以在相當程度上釐清歐盟各部門職責歸屬及準據法適用之問題,但如此一機構欲取得合法性,其活動範圍及相關責任即必須在立法中獲得明確界定,否則即可能產生個人資料濫用(misuse of personal data)及資料庫「功能潛變」(function creep)之風險。而基於此一分析,Hustinx認為目前執委會之機構立法計畫尚未符合個人資料保護要求。

 

  此外,針對後續立法進程,EDPS建議除應確實釐清該管理機構之活動範圍是否包括整體AFSJ,亦或僅限於邊境檢查及難民與移民事務;執委會與該機構之關聯性與責任等重要問題外,是否可在缺乏相關經驗及實證評估下,即直接將所有歐盟層級之大型資訊技術系統與資料庫歸入該機構管轄,顯然亦有商榷餘地。EDPS就此認為,透過立法界定「大型資訊系統」之範圍,並且採取資料庫分次進入該管理機構責任範圍之方式,應係日後執委會可以努力之方向。

相關連結
※ 歐洲資料保護監督官12月7日發表正式意見,針對歐盟執委會就AFSJ大型資訊技術系統設立作業管理機構之立法計畫,提出隱私保護法律要求, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=3210&no=67&tp=1 (最後瀏覽日:2025/11/30)
引註此篇文章
你可能還會想看
Rosetta Stone對Google提起商標侵權訴訟

  Rosetta Stone是以製作語言學習軟體,教導顧客學習外國語言為主的一家公司,其總部是設立在美國之Virginia州。於2009年7月10日在總部所在地之地方法院對Google提起商標侵權訴訟,宣稱上個月Google之AdWords廣告政策的變更,其中針對商標的部份,會使得購買Google廣告之客戶包括盜版軟體業者等,可以使用未經實際商標權人許可之商標或近似之標語於其廣告內容中。   在Google搜尋引擎中之刊登廣告者可以選擇特定關鍵字來引出他們的廣告,一但顧客輸入這些關鍵字時,這些Google之廣告刊登者及讚助商連結等,也會出現在搜尋結果之中,讓顧客連上他們網頁,Google以此模式從中獲利。 Rosetta Stone表示Google此舉如同協助第三人”劫持”顧客去妨害其銷售及其商業行為。   Rosetta Stone之總顧問Michael Wu表示:「Google搜尋引擎幫助第三人去誤導顧客及不當使用Rosetta Stone之商標成為一個關鍵字使用在其廣告內文或是標題,導致於誤導顧客連結至他們的網站,而從此廣告刊登之業務中獲利。」Rosetta Stone擁有美國註冊之商標及標語如「global traveler」、「language library」、「dynamic immersion」、「the fastest way to learn a language guaranteed」而Google卻促使顧客對Rosetta Stone之商標造成混淆誤認甚至盜用於廣告上。   除Rosetta Stone之外,目前已有American Airlines及Geico等公司同樣對Google這樣的政策變更提起訴訟。 另一方面,Google之發言人表示:「尚未接到訴訟相關文件,不予置評」。

政府重申並未放寬輸往中國大陸半導體晶圓製程設備之出口管制

  由於國際出口管制組織「瓦聖那協議」( Wassenaar Arrangement,WA)於去年(93)底修訂半導體晶圓製程技術水準之出口管制規定,由0.35微米放寬為0.18微米;國貿局為配合「瓦聖那協議」之修訂,亦於今年9月公告半導體晶圓製程技術之出口管制修正為0.18微米。   然,我國半導體晶圓製造廠商申請赴中國大陸投資,主要依據經濟部之「在大陸地區投資晶圓廠審查及監督作業要點」辦理,其中第四點申請要件明顯規定「大陸投資事業製程技術限於0.25微米以上」。此外,在國貿局「限制輸出貨品總彙表」更有規範半導體晶圓製造等相關設備之輸出規定121:需要有國貿局簽發輸出許可證;輸出規定488:(一)輸往大陸地區者,應檢附經濟部投資審議委員會核准投資文件;輸往大陸以外地區者,應檢附保證絕不轉售大陸地區之切結書。(二)外貨復運出口者,另檢附原海關進口證明文件。(三)屬戰略性高科技貨品列管項目者,除應申請戰略性高科技貨品輸出許可證,並檢附上述文件外,應另依戰略性高科技貨品輸出入管理辦法規定,檢附下列文件:1、進口國核發之國際進口證明書、最終用途證明書或保證文件。2、外貨復運出口者,如原出口國政府規定需先經其同意者,應另檢附原出口國政府核准再出口證明文件;其於原進口時領有我國核發之國際進口證明書、最終用途證明書或保證文件者,應再檢附該等文件影本。   國際貿易局強調,我國目前開放半導體晶圓製程技術輸往中國大陸仍限為0.25微米以上,並未放寬輸往中國大陸之出口管制。

美國國防部5G戰略

  因應5G通訊技術快速發展與關鍵應用逐漸普及之趨勢,美國國防部於2020年5月2日由部長批准「國防部5G戰略」(Department of Defense 5G Strategy,以下簡稱5G戰略);同月發布之公開版(unclassified)5G戰略,為美國軍方第一份公開發布的5G戰略性指導文件,主要內容包含指出國防部面對5G帶來的挑戰、設定5G技術發展目標、擬定5G發展行動計畫(lines of effort)等,以確保美國在軍事與經濟上的優勢地位。   5G戰略指出,5G技術對於維持美國軍事與經濟優勢至關重要,為關鍵戰略性科技(critical strategic technology)。5G技術為產業與軍事帶來重大變革的契機,同時也帶來對資通安全的挑戰,特別是由於美國潛在的競爭對手國家,正試圖在美國的關鍵合作夥伴國家的5G市場占據主導地位,使得5G基礎建設供應鏈成為競爭對手利用有害元件、惡意軟體或非法存取等方式入侵美國與其合作夥伴的破口,最終將損害美國的國家安全與利益。   因此美國國防部將鼎力協助美國與其合作夥伴提升5G技術力、提高對5G的風險意識至國安層級、開發保護5G基礎設施與技術之措施。具體行動計畫包含:一、藉由大量的實驗場域驗證5G應用,推動技術發展;二、掌握5G資安威脅情報與威脅,評估、識別資安風險採取必要措施,並採取零信任(Zero Trust)反覆驗證之資安模式;三、積極加入5G技術相關標準訂定與規劃5G國防政策;四、吸引國際組織、國家與相關產業的合作夥伴,積極溝通協調以維持美國與合作夥伴間的共同利益,協助美國的盟友與合作夥伴識別5G風險。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

TOP