知名歌手Bruce Springsteen拒絕與美國作曲家、作詞家、出版商協會共同要求康諾利酒吧和餐館支付著作權授權費用

  美國作曲家、作詞家、出版商協會American Society of Composers, Authors and Publishers (以下簡稱協會)與知名搖滾歌手Bruce Springsteen(以下簡稱Springsteen),和流行歌曲作者Clinton Ballard, Jr.對於紐約州的康諾利酒吧和餐館提出訴訟,原因在於酒吧和餐館沒有支付授權年費就允許樂團演奏Springsteen的歌曲。

 

  當協會的代表發表此一聲明時,Springsteen實際上並不知道此一訴訟。Springsteen的代表指出:Springsteen事先並未被詢問是否要作為此案的原告,該協會是自作主張的將Springsteen列為此案的原告,而且即便協會事先詢問,Springsteen也不會同意作為此案的原告,也就是說不會提起此訴訟。

 

  紐約每日新聞指出,因為協會並未獲得Springsteen的同意,Springsteen的名字應該會被移除。 協會資深副總裁Vincent Candilora(以下簡稱Candilora)表示,康諾利酒吧與餐館目前尚未發表任何聲明,而康諾利酒吧與餐館允許樂團於去年夏天演奏Springsteen的歌,但卻沒有支付授權年費給協會的行為可能會面臨三萬美元的罰金。

  Candilora同時表示,為什麼這些有支付授權金的酒吧或餐館在有同樣法律約束的地區,要處於一個不利的競爭條件。提出此訴訟是給予有付授權費用的紐約酒吧一個公平的環境。

相關連結
※ 知名歌手Bruce Springsteen拒絕與美國作曲家、作詞家、出版商協會共同要求康諾利酒吧和餐館支付著作權授權費用, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=3240&no=0&tp=1 (最後瀏覽日:2026/01/16)
引註此篇文章
你可能還會想看
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

日本東京大學透過Proprius21專案促進產學合作

  Proprius21專案乃是日本東京大學提供企業界可以與該校共同進行研究的一種機制,屬產學合作方式之一。此專案之提出,係該校有鑒於過去產業界與學術界合作進行共同研究的模式,多以特定的企業與特定的研究室間進行一對一的研究為主。然此一共同研究方式雖可讓大學所產出的知識貢獻給社會。但仍嫌規模過小,課題及責任分擔或目標成果不夠明確,所以需要一個可以創造更大規模的創新的機制。基此,東京大學希望透過Proprius21專案創造一個可由該校內部數個單位或研究室,共同參與大型研究主題的專案,以實現從多樣化的觀點來因應數個或一個企業需求之共同研究(多對多或多對一),並結合校內能量完成提案的機制。   東京大學規劃在校內以三階段活動進行Proprius21專案:(1)公開交換意見,即讓「產業界與學術界相遇的場合」的廣場活動。(2)濃縮出最佳的主題,以及尋找最佳成員之個別活動。(3)由成員縝密地製作計畫,由成員以外的人審視計畫內容,打造一個更為優質計劃的篩選活動。   為了推動Proprius21專案,東京大學係由產學合作研究推進部協助日本企業與校內研究人員進行個別的會議及研討會或研習營等活動,同時也針對企業在決定研究主題後,至計畫成案為止間之各階段提供各種支援。此外,該部人員也會接受來自產業界的諮詢,並在製作計畫之際,適當地介紹校內的職員,提供技術建議或審視計畫的內容等各種支援。

歐盟國家推動智慧防救災下之資料開放、運用與傳遞法制政策研析

網路拍賣之法制趨勢

TOP