美國聯邦通訊委員會(The Federal Communications Commission, FCC)擬於3月17日向國會提出未來的國家寬頻計畫,並預計於2012年開始,調整目前用來補助電話服務的普及服務基金(Universal Service Fund),以推動高速網際網路。
美國普及服務基金的建立,原本是用以確保所有美國居民接取基本的電話網路。依目前的普及服務基金計畫,除了補助低收入居民電話服務、學校與圖書館的網際網路接取,與鄉間醫療單位的高速網路連結之外,最主要部份是對於由民營事業建設網路不符經濟效益的偏遠鄉區提供電話服務;此部份基金的預算是來自電信業者跨州與國際長途電話收益之稅收,於2010年達約為80億美元,未來將轉作推動寬頻網路之用,至於普及服務基金中的其他部份,則將繼續維持。
在FCC的計畫中,不僅在普及服務基金下設立連結美國基金(Connect America Fund)來補助寬頻服務,並將設立行動基金(Mobility Fund)發展3G無線網路。另外,FCC預計向國會提出的計畫包含多項選擇,包括在不要求國會另行增加預算下,達成在2020年99%美國家戶接取寬頻之目標,以及經由國會同意於未來三年投入額外的90億美元,以加速寬頻網路建設等方案。
美國國家衛生資訊科技協調辦公室(The Office of the National Coordination for Health Information Technology, ONC)於2020年5月公告的「資訊封鎖最終規則(Information Blocking Final Rule)」,於2021年4月5日正式生效。 ONC依21世紀醫療法(21st Century Cure Act)授權,制定有「21世紀醫療法:協同操作性、資訊封鎖與ONC健康IT認證計畫」(21st Century Cures Act: Interoperability, Information Blocking, and the ONC Health IT Certification Program)最終規則,包含各面向關於新興醫療IT技術之規範,其中特別針對資訊封鎖的相關條文,又稱為「資訊封鎖最終規則」。 21世紀醫療法為了確保病患資料近用權利,在法條中明定禁止資訊封鎖行為。「資訊封鎖」,根據資訊封鎖最終規則的定義,是指健康照護業者或健康資訊技術廠商,包括受認證的健康資訊技術(health IT)、健康資料交換 (health information exchange)或健康資料網絡(health information network),在欠缺法律授權或非屬美國公共衛生服務部(Health and Human Service, HHS)認定合理且必要的情況下,所為之干擾、防止或嚴重阻礙電子健康資料(Electronic Health Information, EHI)獲取、交換及使用行為。但以下八種情況,不適用資訊封鎖最終規則:預防傷害(Preventing Harm)、隱私(Privacy)、安全(Security)、不可行性(Infeasibility) 健康IT性能(Health IT Performance)、內容與方式(Content and Manner)、費用(Fees)、授權(Licensing)。 21世紀醫療法在資訊封鎖章節中規定,資訊封鎖相關條文在資訊封鎖例外類型被定義出來後,始生效力。換言之,在資訊封鎖最終規則生效後,病患將有權依法近用其電子健康資料,資料持有者原則上不得拒絕。值得注意的是,資訊封鎖最終規則生效後至2022年10月6日止,適用資訊封鎖條文的電子健康資料範圍,係以美國協同操作核心資料(United States Core Data for Interoperability, USCDI)中所定義之電子健康資料為準。USCDI,是由ONC主導建立的一套資料標準格式,以統一健康資料交換格式,促進資料流通。2022年10月6日起,資訊封鎖最終規則所指的電子健康資料範圍將不僅只局限於USCDI標準所定義之電子健康資料,將擴及健康保險流通與責任法(Health Insurance Portability and Accountability Act, HIPAA)所定義的所有電子健康資料。
美國眾議院提出「深度偽造究責法案」隨著人工智慧(AI)視覺處理技術愈發進步,圖片及影像的篡改也更加普遍,甚至使人難以分辨其真偽,例如一款應用程式(App)-DeepNude便是運用此技術,將人穿著衣服的照片改作為裸體圖像;此種AI技術因對於社會及被偽造之當事人權益影響重大,進而引起美國立法者的極度重視。 日前維吉尼亞州為了遏止如DeepNude此類的應用程式,便於該州之《復仇式色情法》(Revenge porn law),擴大復仇式色情的涵蓋範圍,使其包括利用機器學習技術偽造他人照片或影像等深度偽造(Deepfake)行為。 但該深度偽造技術之應用,實際上並不僅侷限於情色領域,故美國紐約州眾議員伊薇特.克拉克(Yvette Clarke)於本年度(2019年)6月即提出了《深度偽造究責法案》(Defending Each and Every Person from False Appearances by Keeping Exploitation Subject to Accountability Act of 2019., DEEP FAKES Accountability Act.)草案,本草案令人關注之處除配合現今科技發展特性為規定外,另針對實務上曾衍生的爭議問題,特別將外國勢力或其代理人(foreign power or an agent thereof)介入美國國內政治行為,如意圖影響美國國內公共政策辯論(domestic public policy debate)、選舉或其他不得合法從事的行為等納入規範。 依該草案之內容,其所規範者包含視聽紀錄、視覺紀錄及錄音紀錄;意即任何人使用任何技術或設備製作假冒他人名義(false personation)的紀錄,並於網路或其他知識傳播管道發布者,應有浮水印、口頭陳述或是於文本中有簡要說明等揭露,以使他人得清楚知悉該紀錄並非真實,如行為人有違反該揭露規定並利用深度偽造1.意圖羞辱或騷擾(包含性內容);2.意圖造成暴力、身體傷害、煽動暴亂、外交衝突或干預選舉;3.詐欺犯罪等,將可處5年以下有期徒刑,或科或併科罰金。另若行為人修改或刪除他人揭露之資訊而有上述意圖或犯罪行為者,亦可處以同等罰責。