Web2.0 網站平台管理之法制議題研析-以網路實名制與揭露使用者身份

刊登期別
第21卷 第6期,2009年06月
 
隸屬計畫成果
經濟部技術處科技專案研究計畫成果
 

本文為「經濟部產業技術司科技專案成果」

※ Web2.0 網站平台管理之法制議題研析-以網路實名制與揭露使用者身份, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=3325&no=0&tp=1 (最後瀏覽日:2025/05/21)
引註此篇文章
你可能還會想看
科技化創新金融服務規範研析—以行動支付和第三方支付為例

美國交通部提出自駕車全面性計畫,以促進自動駕駛系統規範環境之整合、透明性與現代化

  美國聯邦運輸部(US Department of Transportation)於2021年1月11日發布「自駕車全面性計畫(Automated Vehicles Comprehensive Plan, AVCP)」,建立了交通部促進合作、透明性與管制環境現代化,並將自動駕駛系統(Automated Driving Systems)安全整合入交通系統之策略。基於過去「自駕車政策4.0」建立之原則上,自駕車全面性計畫定義了三個目標以達成其願景: 促進合作與透明性:交通部將會促進其合作單位與利益相關人可取得清楚且可靠之資訊,包含自駕系統的能力與限制。 使管制環境現代化:交通部將會現代化相關規範並移除對創新車輛設計、特性與運作模組之不必要障礙,並發展專注於安全性之框架與工作以評估自駕車技術的安全表現。 運輸系統之整備:交通部將會與利害相關人合作實施安全的評估與整合自駕系統於運輸系統之基礎研究與行動,並促進安全性、效率與可取得性。   政策文件中也就相關目標提出了關鍵目的以及行動,包含先前交通部所提出的「自駕系統安全性框架(Framework for Automated Driving System Safety)」草案,將透過建立框架定義、評估並提供自駕系統的安全性需求,並同時保留創新發展之彈性;另外此政策文件也提出了如何將自駕系統融合現有技術應用之實際案例。交通部將會定期的檢視相關行動與計畫,以反應技術與產業發展,並減少重複性之行動,並將資源投注於重要領域。

Google預期推出智慧金融卡

  科技巨頭Google目前預計依循Apple Card模式,與花旗銀行、Stanford Federal Credit Union合作開發「Google Card」智慧簽帳金融卡。   雖目前尚未正式發行,但根據TechCrunch報導指出,使用者在連結銀行帳戶後,可向Google Card轉入資金或從卡中轉出資金,消費時會直接從個人連結的銀行帳戶扣款。此外,Google Card將連接到具有新功能的Google應用程式,讓使用者得以輕鬆監管消費狀況、確認餘額或鎖定帳戶。   這對於Google來說,為非常重要的一步,因Google本身掌握巨量資料,因此透過Google Card,Google有機會獲得新的收入和消費數據,其將向消費店家酌收交易手續費,再與銀行拆分;此外,Google Card的隱私權政策中,可能利用用戶消費的交易數據,以改善投放商品廣告的衡量標準,若Google可以其金融商品推動銷售,將使更多的品牌願意購買Google廣告。   長期影響來看,Google Card可為Google提供銀行業務,包括股票經紀業務、財務建議或AI會計、保險、借貸諮詢,而因Google掌握大量數據,將可能使Google比傳統金融機構更能準確的管理金融風險,透過應用程式、廣告、搜尋和Android系統,Google和消費者之間建立深厚關聯,為推廣和提供金融服務建立一個充足的背景。隨著武漢肺炎疫情的漸緩,高利潤的金融商品也將幫助 Google 開發有效的收入機會並藉此提升股價。

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

TOP