墨西哥聯邦資料保護法生效

  墨西哥的聯邦資料保護法在二0一0年四月經墨西哥國會通過後,已於同年七月六日生效。這個新法旨在保護個人的隱私權並強化個人對自身資訊的掌控。與我國新近通過的個人資料保護法相同,墨西哥的這個新法所規範的範圍也包括了私部門對個人資料的蒐集、處理與利用。

 

  在新法通過之後,原本的聯邦公共資訊近用機構(Federal Institute for Access to Public Information),亦擴張執掌並更名為聯邦公共資料近用及資料保護機構(Federal Institute of Access to Information and Data Protection)。在新制下,該機構將在原有負責事務外,另肩負起監督私部門就個人資料保護的相關事務。

 

  此外,該法設計了一個雙重的監督機制:當資料的蒐集、處理或利用人,也就是所謂的資料控制者(Data Controller)出現可能違反聯邦資料保護法的狀況,將先由各相關部門的主管機關,例如主管經濟事務的機關或主管交通事務的機關來介入處理,而非由聯邦公共資料近用及資料保護機構立刻介入。

相關連結
相關附件
※ 墨西哥聯邦資料保護法生效, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=3344&no=0&tp=1 (最後瀏覽日:2025/11/27)
引註此篇文章
你可能還會想看
德國聯網車輛駕駛策略

  德國聯邦政府目標擬定於2020年實現高度自動化駕駛,為達成自動駕駛目標,車聯網(Connected driving)及智慧交通系統(Intelligent transport systems)技術成為必要發展工作項目。車聯網即透過無線通訊技術,使車輛間(Vehicle-to-Vehicle, V2V)或車輛對基礎設施 (Vehicle-to-Infrastructure, V2I)等彼此交換訊息,或是將行車資訊傳輸到伺服器,並透過資訊網路平臺將資料整合利用,並依不同功能需求進行有效監控管理和提供綜合服務。未來,可預見道路使用者的個別交通資訊的質與量將大幅提升,無論是部份自動駕駛或高度自動駕駛,將產生龐大資料量,故系統需要即時迅速的運算能力。例如,前方一旦發生車禍事故,必須通知後方自動模式駕駛車輛即時減緩速度,並適時轉由駕駛人員介入操控。   自動化及車聯網駕駛發展係為跨領域之問題,聯邦政府即針對五大領域問題:基礎設施、法規、創新研發、聯網化、資訊安全及資料保護,提出一連串作法及措施,確保德國汽車產業能保持領先地位。   我國資通訊及汽車零件產業具備技術相對優勢,然應就適合我國車聯網之實際需求發展,促進相關產業創新應用,並利用我國產業優勢與國際接軌,讓台灣在車聯網的發展中取得先機。

台灣蕨類大會師

  台灣蕨類資源相當豐富,為保存台灣原生蕨類植物資源,我國政府於和平鄉鳥石坑規劃成立「蕨類園」,共蒐集台灣原生種蕨類 32科200多種,經過4年培育,蕨類生長茂盛,是很好的科學研究與生活旅遊教材。根據研究,台灣蕨類共37科、約620種,「蕨類園」的目標希望蒐集300至400種台灣中低海拔原生蕨類,做為種源保存、學術研究與解說教育之用。   蕨類是台灣常見的植物之一,在居家圍牆裂縫或庭園造景的石頭縫裡,就可觀察到鱗蓋鳳尾蕨、劍葉鳳尾蕨、細毛小毛蕨和腎蕨等蕨類,但是大多數民眾對蕨類卻非常陌生,因此該中心擬將蕨類納入社區生態與環境教育介紹的主題,教導參觀者如何欣賞各種蕨類之美。   台灣蕨類資源到底有多豐富?根據形容,台灣蕨類比整個歐洲還多,面績是台灣好幾倍大、且非常喜歡蕨類的紐西蘭,也只有 100多種。在單位面積分布上,台灣堪稱蕨類植物的天堂。因此 , 台灣「蕨類園」之成立將會是台灣生態保育的一個重要里程碑 。

何謂芬蘭科學院(AOF)?

  芬蘭科學院(Academy of Finland, AOF)是隸屬於芬蘭教育、科學及文化部的專業研究資助機構,旨在促進芬蘭科學研究的多樣化及國際化,資助前端突破性科學研究,提供科學技術及科學政策的專業知識,並加強科學研究的地位。芬蘭科學院最高決策單位為七人委員會,委員會主席由科學院院長出任。   底下設有:文化與社會、自然科學與工程、健康醫學以及環境與自然資源四個研究委員會。每一委員會設主席一人委員十人,任期三年。行政單位由大約一百位專家組成,主要工作為準備及執行七人委員會及各研究委員會的各項工作與決策,並撰寫科學報告和研究計畫。   其任務包括獎助大學與研究機構內的科學研究工作與團隊、參與多邊研究計畫的規劃與獎助、資助芬蘭研究人員參與國際研究計畫、評估科研計畫的品質及水準,以及科技政策專業諮詢等。研究範圍涵蓋建築、太空研究、細胞生物和心理學到電子和環境科學研究。

美國國家標準與技術研究院「隱私框架1.0版」

  美國國家標準與技術研究院(NIST)於2020年1月16日發布「隱私框架1.0版」(NIST Privacy Framework Version 1.0),為促進資料的有效利用並兼顧對隱私權的保障,以風險管理(risk management)的概念為基礎建構企業組織隱私權管理框架。本隱私框架依循NIST於2018年所提出的「健全關鍵基礎設施資安框架1.1版」(Framework for Improving Critical Infrastructure Cybersecurity Version 1.1)架構,包含框架核心(Core)、狀態評估(Profile)與實施層級(Implementation Tier),以利組織能夠同時導入隱私與資安兩種框架。由隱私框架核心所建構的風險管理機制,透過狀態評估來判斷當前與設定目標的實施層級,進而完成組織在隱私保護上的具體流程與資源配置。   NIST基於透明、共識、兼顧公私利害關係人的程序訂定本隱私框架,用以促進開發者導入隱私設計思維(privacy by design),以及協助組織保護個人隱私,其目標包含透過支持產品或服務設計中的倫理決策(ethical decision-making)及最小化對隱私的侵害來建立客戶的信任;在當前與未來的產品或服務中,因應持續變化的技術與政策環境遵守對隱私的保護義務;以及促進個人、企業夥伴、稽核者(assessor)與監管者(regulator)在隱私權保護實踐上的溝通與合作。   本隱私框架並非法律或法規,亦不具備法律效果,而是做為數位時代下NIST協助企業導入隱私權管理制度的參考工具,企業或組織將能基於本隱私框架靈活應對多樣化的隱私需求,掌握其產品或服務所隱含的隱私權侵害風險,並識別隱私權相關法律規範,包含加州消費者隱私法(California Consumer Privacy Act)與歐盟一般資料保護規則(General Data Protection Regulation, GDPR)等,提出更具創新性與有效性的解決方案,並有效因應AI與物聯網技術的發展趨勢。

TOP