美國最高法院在Bilski v. Kappos案中仍然留下對於商業模式的可專利性做下模糊的判決

  美國最高法院於2010年6月28日對Bilski v. Kappos案作出5比4的拉距判決。原告Bilski為一家能源產品公司,其就一種讓買家或賣家在能源產品價格波動時,可用來保護、防止損失或規避風險的方法申請商業方法專利(Business Method Patent)。但美國商標專利局審查人員以此發明只是一種解決數學問題,而為抽象而無實體呈現的想法為理由而拒絕。經該公司於專利上訴委員會上訴無效後,繼續上訴至聯邦巡迴法院與最高法院。

 

  最高法院拒絕適用前審以美國專利法第101條(35 U.S.C. §101),創造發明是否為有用的、有形的及有體的結果作為認定方法專利的標準。而最高法院多數意見係採用「機械或轉換標準」(machine or transformation test)為專利法第101條可專利性之標準,認定如果創造發明的方法能與機械器具或配件相結合或轉換為另外一種物品或型態時,即認定此方法具可專利性。惟經法院適用此標準後,仍認定原告的商業方法不具可專利性。

 

  一些批評認為,目前「方法」和「轉換」等關鍵字的定義還不清楚,而該判決並沒有澄清這些爭議,甚至帶來更多的疑惑。美國律師Steven J. Frank認為,雖然最高法院的意見放寬了可專利性的標準,但是並沒有提及認定可專利性的其他標準。

 

  該判決亦未明確指出商業方法究竟要符合哪些實質要件,方具有可專利性。相當多的電子商務中所使用的「方法」都有專利,最有名的大概就是亞馬遜公司的「一鍵購買(one-click)」的網路訂購方法,還有Priceline公司「反向拍賣」(reverse auction)的方法等。許多電子商務、軟體及財務金融相關業者在這個判決之後,對於商業方法的可專利性也感到相當的困惑。如果有方法專利的存在,那麼擁有這些專利的公司就可以放心了;但是,如果方法沒有可專利性,那麼對於現在擁有方法專利的權利人不啻是一個很壞的消息。是否一些比較不抽象的方法就具有可專利性,而比較抽象的方法就專利性,判定的標準又在哪裡,對此,法院並沒有加以說明,在法院明訂出更明確的標準之前,目前仍留給美國商標專利局來判定。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
※ 美國最高法院在Bilski v. Kappos案中仍然留下對於商業模式的可專利性做下模糊的判決, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=3348&no=67&tp=1 (最後瀏覽日:2025/11/20)
引註此篇文章
你可能還會想看
日本擬讓司法機關偵查時利用GPS定位取得位置資訊無須事先告知,僅須取得法院令狀

  日本電信事業個人資料保護指針(電気通信事業における個人情報保護に関するガイドライン)自2011年修訂後至今即未有任何改變。然而,隨著現代行動通信軟硬設備技術的進步,智慧型手機中已有許多應用程式可透過GPS衛星定位功能準確獲取使用者之位置資訊,倘若司法機關也能於搜查辦案過程即時取得此定位資訊,將可提高偵查效率並縮短破案時程。   為此,日本總務省擬將原先須事先通知行動設備使用人與獲得法院令狀後,方得利用GPS衛星定位獲取位置資訊之電信事業個人資料保護指針第26條修訂為司法機關取得法院令狀後,即可利用GPS衛星定位獲取行動設備使用人位置訊息。   然此項修訂除將可能造成行動通訊業者營運上的額外負擔之外,亦有侵害設備使用者之個人隱私與個人資料疑慮。因此,為了抑止濫為偵查,法院令狀之發出須有其必要性,搜查機關亦必須向行動通訊業者為必要性之說明。   再者,此項利用GPS衛星定位獲取位置訊息之方式也僅限於使用Android系統設備且將定位功能開啟之使用者,對於使用Apple iOS系統設備之使用者則不但須使用者開啟定位功能,還須經過美商蘋果公司同意方能取得亦是一項難題。   日本總務省已於2015年4月17日發布此項法令修訂訊息並徵詢公眾意見,預計於6月完成修法並公布之。

德國聯邦政府公布人工智慧戰略,制定AI發展及跨領域應用框架

  德國聯邦政府於2018年11月15日公布聯邦政府人工智慧戰略(Strategie Künstliche Intelligenz der Bundesregierung),除了針對人工智慧一詞定義外,並概述德國人工智慧戰略的3項基本原則,14項目標和12項行動領域。   第一項原則係透過該戰略,為德國在人工智慧(AI)的發展和應用制定整體政策框架,促進德國成為人工智慧最佳研究環境,以及人工智慧在產業與中小企業之應用,以確保德國未來競爭力。第二項原則係人工智慧在社會各領域有多種應用可能性,將可明顯促進社會進步和公民利益,因此重點將強調AI的應用對於人類和環境可帶來的益處,並加強社會各界對於人工智慧主題的密集交流及討論,確保AI朝負責且共同利益為出發點的開發及應用。第三項原則將透過廣泛的社會對話和積極的政策框架,將道德,法律,文化和制度結合人工智慧之應用融入整體社會。   該戰略列舉之工作項目同時包括評量標準,包含建置德法創意網(虛擬中心)、起草國家級且持續性的教育策略、加強相關創業投資力道、針對相關新創公司提供綜合性諮詢和推廣服務、針對自願提供且符合隱私規範之共享資料與建立資料分析基礎設備者研擬獎勵及促進框架、利用風險投資、創業融資和成長科技基金計畫擴展籌資機會、建立至少12個AI應用中心、將人工智慧列為研發機構跳躍式創新的焦點,未來5年加強產學研合作項目推廣、將環境與氣候的人工智慧應用列為發展亮點、共同決策人工智慧技術的導入與應用、透過中小企業4.0中心每年至少與1000家企業建立聯繫並進行AI訓練、將AI實驗室應用情境移轉至工作場所、進一步發展人工智慧平台學習系統、設計擘劃跨領域社會科學之「未來數位化工作與社會基金」、進一步制定相關數位化轉型專家策略、建立德國人工智慧觀測站、組織以人為中心的人工智慧工作環境之歐洲和跨大西洋對話、促進具自決權,社會與文化參與性及保護公民隱私之創新應用、聯邦政府於2025年前將投資約30億歐元於人工智慧發展、開發人工智慧生態系統、培養至少100名相關領域新教授、與資料保護監督機關及商業協會召開圓桌會議。

美國FDA公布醫療器材上市前審查指令510(k)

  美國食品藥物管理局(The Food and Drug Administration,簡稱FDA)於今年(2014)7月更新並公布了醫療器材上市前審查(premarket notification)的指令(guidance)(該指令名稱為510(k) Program: Evaluating Substantial Equivalence in Premarket Notification,以下簡稱510(k)),針對醫療器材業者將其生產製造的醫療儀器申請上市的過程做了新的調整及規範。此指令主要是讓業界及FDA人員了解FDA在評估醫療器材申請過程中所評估的因素及要點,並藉由FDA在審查醫療器材的實務規範及審查標準來當作標準並訂定510(k)修正,以提高510(k)評估的可預測性、一致性及透明度,讓業界有一定的遵循標準。雖然FDA的指令文件並不受法律強制規範,但可供醫材藥廠清楚FDA所重視的審查程序及內容。   510(k)審查的內容主要規範於美國藥物食品化妝品管理法第513(i)條,其重點規範包括定義FDA評估實質上相同的標準:實質上相同指新醫材在技術上特點(technological characteristics)與比對性醫材相同;若該新醫材的技術特點在材料設計等和比對性醫材不盡相同,其需證明該儀器的資訊包括臨床試驗或是實驗數據等,與比對性醫材的安全及有效性性質並無歧異。以下為FDA在進行510(k)審查過程中,主要的評估內容: 1.說明欲申請上市新醫材在技術上的特點。 2.比較新醫材及比對性醫材在器材技術上特點的異同。欲申請510(k)的製造商需比較新醫材及已上市的醫材在功能上的異同。 3.決定技術特點的差異是否會影響新醫材的安全及有效性。

歐盟發布《個資侵害通知範例指引》說明個資侵害案例解析以利個資事故因應

  歐洲資料保護委員會(European Data Protection Board, EDPB)於2021年1月18日發布《個資侵害通知範例指引》(Guidelines 01/2021 on Examples regarding Data Breach Notification)草案,並進行為期六週之公眾諮詢。該指引針對2017年10月所發布之《個資侵害通知指引》(Guidelines on Personal data breach notification under Regulation 2016/679)透過案例分析進行補充說明,對於資料控制者如何識別侵害類別以及評估風險提出更詳細的實務建議,協助資料控制者處理資料外洩及風險評估考量因素之認定。   個資侵害係指違反安全性規定而導致傳輸、儲存或以其他方式處理之個資,遭意外或非法破壞、遺失、變更、未獲授權之揭露或近用之情形,由於個資事故將對資料主體可能造成重大不利影響,該指引首先要求資料控制者進行侵害類別之辨識,依據2017年指引將個資侵害分為機密性侵害(confidentiality breach)、完整性侵害(integrity breach)以及可用性侵害(availability breach)。而資料控制者最重要的義務在於主動識別系統漏洞,評估侵害對資料主體權利所產生之風險,制定適當計畫及程序採取適當因應措施,確定侵害事件之問題根因及安全漏洞,加強員工認知培訓及制定操作手冊,並確實記錄各項侵害行為,以提升個資事故因應效率及降低時間延誤。   此外,該指引彙整自GDPR實施以來個資侵害通知具體案例,分為勒索軟體攻擊、資料外洩攻擊、內部人為風險、硬體設備或紙本檔案失竊、誤發郵件以及電子郵件內容外洩,共六大主題十八件案例,針對不同程度風險提供最典型的正確及錯誤作法,並提出資料控制者有關預防潛在攻擊及減輕影響之措施建議。

TOP