美政府將加強對抗盜版與仿冒

  美國歐巴馬政府在6月22日公布一份範圍廣泛的智慧財產執法聯合策略計畫(Joint Strategic Plan on Intellectual Property Enforcement),目的是希望協同聯邦各部門增強有關智慧財產權的執法力度,以打擊美國境內與境外盜版與仿冒日益嚴重的問題。

 

  智慧財產執法協調員(Intellectual Property Enforcement Coordinator, IPEC)Victoria Espinel在報告前言指出,打擊仿冒和盜版需要聯邦強而有力的反應;作為全球創新領導者的美國已因為有些國家未能依照法律規定或國際條約來執法或採取不利美國之產業政策而被傷害。此計畫提出33個執法策略行動項目(enforcement strategy action items)來加強智慧財產執法,包括增加執法政策透明度以及美國境內、外執法行動的分享與報導、確保政府各層級間的執法效能與協調、加強美國智慧財產權的國際執法、確保安全的供應鏈以杜絕侵權產品輸入美國等。

 

  舉例而言,該計畫非常關注外國網站線上侵權(online piracy)的問題,認為網際網路不應成為犯罪行為的工具,強調美國政府必須和外國政府、國際組織以及私部門共同合作對抗,並鼓勵內容擁有者(content owners)、ISP業者、廣告經紀商(advertising brokers)、付款處理業者(payment processors)和搜尋引擎業者在尊重合法競爭、言論自由與個人穩私之下,彼此合作謀求實際解決方案。根據報導,盜版已造成美國的影視業年度損失205億美元產值、工作者年度短少55億美元的收入、也減少了原本可帶來多於14萬個的工作職缺,結果使美國年度稅收短少了8.37億美元。

相關連結
※ 美政府將加強對抗盜版與仿冒, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=3360&no=67&tp=1 (最後瀏覽日:2025/11/21)
引註此篇文章
你可能還會想看
美國聯邦最高法院判決維持Brulotte原則

  2015年6月美國聯邦最高法院大法官以6比3的同意比例判決維持該法院於1964年所確立之Brulotte原則,即專利失效後禁止要求償付授權金之原則。聯邦最高法院重新檢討Brulotte原則之爭議係起源於Kimble et al. v. Marvel Enterprises Inc.(case num. 13-720)一案。該案中涉及到現實下專利權利人於面對財團時,是否能於專利權有效期間採取手段充分保護專利權之問題,故是否有必要放寬專利權於失效後,專利權人仍得以專利授權契約要求專利被授權人償付授權金。又本案原告知專利發明人Kimble主張放寬Brulotte原則亦有亦於刺激競爭,促進研發創新。   然而,主撰判決本文之美國卡根大法官(Justice Kagan)及贊同維持Brulotte原則之大法官認為,Brulotte原則屬於聯邦最高法院遵照執行之決議事項(stare decisis),必須具有超級特別的理由(superspecial justification)才足以立論推翻該原則。但大法官認為並無有該類理由,並且強調縱然放寬Brulotte原則在學理上證實有助於市場競爭,但這也並非聯邦最高法院在司法權限所應審查或判斷之事項,而應是美國國會於智財政策之取捨。   反對維持Brulotte原則之阿利托大法官(Justice Alito)、羅伯特首席大法官(Chief Justice Roberts)及湯瑪斯大法官(Justice Thomas)提出不同意見書。反對意見認為專利失效及失去任何專有權利,所以涉及授權金之唯一問題即在於最佳契約設計(optimal contract design)。Brulotte原則干預了各方協議授權內容時,可以反映專利真實價值的方式,破壞契約期望(contractual expectation)。   本案作成判決後,各專利事務所及專利律師普遍贊同聯邦法院維持Brulotte原則,主要係基於該原則可以使用來償付授權金之資金轉為用於他處,有助於資金流通,而非用於已失效之專利。

歐洲專利局發布人工智慧與機器學習專利審查指南正式生效

  歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。   在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。   其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵:   (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。   (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。   在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。   近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

中國大陸公布專利法修正草案對外徵詢意見

  中國大陸國家知識產權局於2015年4月1日,公佈第四次《中華人民共和國專利法修改草案(徵求意見稿)》,其中涉及實質性修改條文共30條,包括修改現有條文18條、新增11條、刪除1條,並增加「專利的實施和運用」章。   具體修改重要內容包括:   一、強化外觀設計保護:1、產品局部外觀設計納入專利法保護範圍。2、增加外觀設計專利國內優先權制度。3、將外觀設計專利權之保護期限由10年延長到15年。4、鑒於實用新型和外觀設計專利權的授予沒有經過實質審查,具有不穩定性,草案增訂「專利權評價報告」作為侵權糾紛審理和處理過程中必須提交的「證據」,當事人無正當理由不提交,需自行承擔訴訟上不利後果。   二、提升發明人地位:1、草案規定「利用本單位物質技術條件完成的發明創造」,權利歸屬優先適用約定原則,若未約定時,申請專利權利歸屬於發明人或設計人。2、為解決國家設立之研究機構、高等院校專利技術移轉率低問題,允許發明人或設計人在單位怠於實施發明情形下,可與單位協商自行實施或者授權他人實施該專利,並按照協議享有相應權益,藉以激勵發明人積極進行技轉實施。   本次意見徵集時間已於4月28日截止,上述強化外觀設計保護及發明人地位作法,得否順利通過,有待後續持續追蹤。

什麼是日本研究組合?

  所謂的技術研究組合乃以試驗研究為目的,以「開發業界共同關鍵技術」為主要目的之非營利性質法人,日本至今共成立了兩百多個研究組合,主要透過專法創設之特殊性質法人制度,並賦予技術研究組合諸多稅賦優惠。在組織上,賦予技術研究組合亦有組織變更、分割及合併之可能,技術研究組合得以分割或轉換為公司,將研究成果直接轉化為產業化應用,技術組合之特色有以下幾點: 1.研究組合須至少二人以上之組合員發起:除企業公司外,日本國立大學法人與產業技術研究法人亦可為組合員 ,凡從事產業技術研發政府研究單位與國立大學,皆可將人力資源、研發成果投入與產業合作之技術研發活動,並從事進行試驗研究管理成果、設施使用與技術指導等事業活動 2.研究組合研發活動可運用「產業合作」、「產官學共同研發」兩種模式進行:未來技術研發組合進行組織變更成為股份有限公司時,大學或產業技術研究法人組合員亦可獲得公司股份,增加學研界加入技術研究組合誘因。3.研究組合組織型態彈性利於研發成果事業化應用:技術組合可視情況進行組織變更、合併與分割,就組織型態有更大變更與調整彈性。著眼於技術研究組合若產出相當之研發成果,則可以透過變更為公司型態,迅速將其研發成果予以產業化,亦可透過變更組織型態,而在籌措資金上有更為靈活運用方式使產業活動穩健持續地經營。

TOP