因製作「星海爭霸」(StarCraft)、魔獸世界(World of Warcraft)等名作而廣受玩家喜愛的線上遊戲公司Blizzard Entertainment,於2010年7月7月對外宣布,將針對旗下遊戲的官方網路論壇(Game Forum),推動實名制度(Real ID System),引發各界議論。
Blizzard對外表示遊戲論壇旨在提供一個供玩家交流遊戲資訊的管道,玩家亦得透過論壇提供Blizzard改進遊戲內容的建議或發表其他意見。然而,部分使用者卻肆意透過論壇散布人身攻擊言論,或從事其他不法行為。Blizzard希望透過推動論壇實名制度,約束人們透過論壇發表攻擊性言論的現象。然而,論壇實名制度訊息公布未久,Blizzard旋即收到眾多玩家的抗議信件。為平息反彈聲浪,Blizzard共同創辦人兼執行長Mike Morhaime於7月9日於官方論壇發表聲明,宣布Blizzard將不會實施論壇實名制,為整起事件劃下句點。
相較於Blizzard放棄推動遊戲論壇實名制度,中國大陸文化部於2010年6月22日發布「網路遊戲管理暫行辦法」,實施「網路遊戲實名制」,自8月1日起,中國大陸線上遊戲玩家即必須使用真名及有效的身分資料進行註冊,而遊戲公司亦必須妥善保存玩家身分資料。中國大陸新法同樣引發諸多爭辯,玩家紛紛表示擔心個人資料遭到外洩;而遊戲業者也憂慮此舉將導致玩家人口大量流失。
2006年12月7日星期四在金融時報全版的廣告上,知名歌手U2、Kaiser Chiefs與大約四千個樂團,共同連署呼籲英國政府支持修正英國的著作權法,延長音樂著作權的保護期限。 英國著作權法的保護期限目前規定為50年,較美國著作權保護期限95年短,許多音樂著作人怕在有生之年會失去他們的音樂著作權。因此,英國的唱片工業((BPI, British Phonographic Industry)已經進行推動修改英國著作權法,希望延長英國著作權法保護期限,但有政府智慧財產權意見書卻建議政府維持原本英國著作權法之規定。 政府智慧財產權意見書的作者,安德魯高爾說,延長音樂著作權的保護期限超過50年,只會有利於已經很有錢的少數知名巨星。 錄音製品播放版權有限公司的發言人,肯尼斯哈瑞斯表示,那些音樂著作人採取在廣告版面上表達他們的訴求,是因為他們關切得著作權議題,竟然不被重視,所以想用這項空前的舉動,來支持修正英國著作權法,延長著作權保護期限。 延長著作權期限的議題不僅僅只是對巨星高要求的特殊待遇,而是必須讓那些難以維持生計的音樂著作人能被法律公平的對待。
美國交通部公布車輛與基礎設施間聯網指引,強化車聯網時代行車安全美國交通部(U.S. Department of Transportation)部長(時任)Anthony Foxx於2017年1月19日公布「車輛與基礎設施間聯網指引」(Vehicle-to-Infrastructure (V2I) Guidance),旨在透過加速車輛與基礎設施間通訊系統之布建,增進車聯網時代的行車安全與機動性。同時,本指引也將補充交通部於2016年12月所公布之車輛間通訊規則草案,後者最重要的目的是透過車輛間通訊技術的管理,提升駕駛人對於碰撞與潛在危險的認知以預為因應。透過車輛與基礎設施間聯網指引,交通部聯邦公路管理局(Federal Highway Administration, FHWA)將協助運輸系統的所有人與操作人進行相關技術的布建,並讓各運輸事業主管機關與收費道路管理機關,了解布建相關技術之決策所可能造成的影響,並為相關技術的未來發展與聯邦挹注資金的利用(因為多數的V2I能夠整合於既有之ITS設備或道路周邊基礎設施,因此符合聯邦對ITS的補助條件),做好準備。 車輛與基礎設施間之通訊,是車聯網環境的重要構成部分,透過硬體、軟體、韌體、以及無線通訊系統,相關資料不但能在車輛間進行動態傳輸,亦得在車輛與道路基礎設施間進行傳輸。聯邦公路管理局局長(時任)Gregory Nadeau表示:「除了增進行車安全,車輛與基礎設施間之通訊技術能提供相當大的機動性,並為整體環境帶來益處。車輛與基礎設施間之通訊與聯網,以及諸如隱私與互通性等更大的挑戰,都將由本指引作為展開全國性對話的起點。」車輛與基礎設施間聯網(V2I)可謂智慧運輸系統(Intelligent Transportation Systems, ITS)的次世代技術,其能捕捉車輛所產生的交通資料,並向車輛無線傳輸例如行車建議等的資訊,讓駕駛人能夠掌握與安全性、機動性、甚或是與整體環境相關的所有情況。 車輛與基礎設施間聯網指引的內容,目前包括聯網車輛運輸衝擊規劃初階報告(Connected Vehicle Impacts on Transportation Planning Primer)、聯網車輛運輸衝擊規劃桌上參考手冊(Connected Vehicle Impacts on Transportation Planning Desk Reference)、技術備忘錄第2號:聯網車輛規畫流程與產品及利害關係人角色與責任(Connected Vehicle Planning Processes and Products and Stakeholder Roles and Responsibilities)、技術備忘錄第3號:新型與強化型分析工具、技術、與資料之需求分析(Analysis of the Need for New and Enhanced Analysis Tools, Techniques, and Data)、技術備忘錄第6號:運輸規劃導入互聯車輛所需之技能與專業知識(Skills and Expertise Required to Incorporate Connected Vehicles into Transportation Planning)、新型與強化型分析工具、技術、與資料之需求分析:公路容量手冊簡介(Highway Capacity Manual Briefing)、新型與強化型分析工具、技術、與資料之需求分析:交通系統模擬模式簡介(Briefing for Traffic Simulation Models)、以及聯網車輛運輸衝擊規劃:社區關懷案例研究(Outreach to Planning Community)。 另外,為了讓執照核發條件透明化,相關的典範實務(best practices)也能為各政府與民間組織機關近用,以布建聯網車輛專用短程通訊(Dedicated Short Range Communications, DSRC)路邊基地台(Roadside Units, RSU)與相關服務,用以支援車輛與基礎設施間之聯網應用,亦針對執照持有人訂有指引(Guide to Licensing Dedicated Short Range Communications for Roadside Units)。
德國網路服務提供者(ISP)之第三人侵權行為責任德國聯邦法院(簡稱:BGH)民事庭於2015/11/26分別在兩件案例中(I ZR 3/14 和 I ZR 174/14)針對網路服務提供者(ISP)責任作出具重大影響力之終審決定。BGH認為即使此侵權網站之內容可在別處被找到,原則上德國ISP仍可阻斷侵權網站之連接。兩案分別由德國音樂集管團體GEMA對德國電信(I ZR 3/14),以及華納、新力、聯合音樂共同對一德國私人電信公司Telefonica O2所提起 (I ZR 174/14),聲明請求法院命令網路連接業者切斷對侵權網站之連接。兩案原告等之聲明分別在一審與上訴審皆被駁回,於是分別上告(Revision)至BGH。 BGH於判決中指出,雖不排除ISP可阻斷對侵權網站之連接可能性,然先決條件在於著作權人需先盡合理的努力(Zumutbaren Anstrenungen),去阻止被保護內容之擴散。而兩案中原告等未盡此義務,故以此為理由駁回上告。BGH課予著作權人盡合理的努力後,才能訴諸此切斷侵權網站連接之最終手段,此可為我國處理網路服務提供者(ISP)之第三人侵權行為責任之參考。
金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。