日本於2023年12月1日舉辦G7數位技術委員會(G7デジタル・技術大臣会合),由日本數位廳、總務省、經濟產業省共同會晤G7會員國代表,基於人工智慧(Artificial Intelligence,下稱AI)可能帶給全球創造性、革命性的轉變,同時也可能伴隨侵害著作權與擴散假訊息的風險,尤其是生成式AI可能對經濟、社會影響甚鉅,因此針對如何妥善使用AI技術,G7全體會員國共同訂定《廣島AI進程》(広島AIプロセス)文件,其聲明內容簡述如下: 1.訂定涵蓋《廣島AI進程》之政策框架(Framework) 2.訂定涵蓋AI設計、系統開發、規劃、提供與使用等所有與AI有關人員,(All AI actors, when and as applicable, and appropriate, to cover the design, development, deployment, provision and use of advanced AI systems)適用之《廣島AI進程》國際標準(Principle) 3.針對開發高階AI系統之組織,訂定可適用之國際行為準則(Code of Conduct) 為此,日本內閣府於2024年2月14日公布,於經濟產業省政策執行機關—獨立行政法人資訊處理推動機構(独立行政法人情報処理推進機構,下稱IPA)轄下設立日本AI安全研究所(Japan AI Safety Institute,下稱AISI),作為今後研擬AI安全性評鑑標準(據以特定或減少AI整體風險)與推動方式之專責機構,以實現安心、安全以及可信賴之AI為目標。AISI所職掌的業務範圍如下: 1.進行AI安全性評鑑之相關調查 2.研擬AI相關標準 3.研擬安全性評鑑標準與實施方式 4.研擬與各國AI專責機關進行國際合作,例如:美國AI安全研究所(U.S. Artificial Intelligence Safety Institute, USAISI) 另一方面,IPA將以內部人才招聘作為AISI成員之任用方式,預計組成約數十人規模的團隊。日本以與G7會員國共識為基礎,採專責機關—AISI進行研究與規劃,並推動日後擬定AI相關使用規範與安全性評鑑標準,據以實現AI應用安全之目標。我國對於AI技術之應用領域,未來應如何訂定使用安全規範,將涉及專業性與技術性事項之整體性規劃,日本因應AI課題而採行的做法值得我國未來持續關注。
美國國家標準技術研究院公告制訂「智慧電網架構與互通性標準2.0版」為因應智慧電網應用技術發展趨勢,美國商務部(Department of Commerce)國家標準技術研究院(National Institute of Standards and Technology,以下簡稱NIST)於今(2012)年2月正式制訂「智慧電網架構與互通性標準2.0版(NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 2.0),以下簡稱互通性標準2.0版」,以作為其國內佈建智慧電網建設之重要政策依據,並協助導引各電網間加強互通性之達成。 美國NIST係為「2007年能源獨立及安全法案(Energy Independence and Security Act of 2007)」所明文指定智慧電網互通性架構(Smart Grid Interoperability Framework)負責機構,所以自2008年開始投入規範研議工作,2010年1月公告「智慧電網架構與互通性標準1.0版(NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 1.0)」,主要為先規範概念性示範建置架構(Conceptual Architectural Framework),明訂8大優先領域(Priority Areas),驗證公告75項特定標準,並後續設立建置「互通性發展平台(Smart Grid Interoperability Panel,以下簡稱SGIP)」。 隨著美國推動智慧電網發展進程,及因應相關應用技術日益新異,NIST陸續展開討論工作,至今(2012)年2月正式對外公告研議完成互通性標準2.0版之定稿。此新版本重要增訂內容有:新增「國際智慧電網標準」及「國際互通性調和」章節;對於SGIP優先行動方案(Priority Action Plans)2012年新增19項推動項目;並且,規劃新增概念示範參考模式(Conceptual Reference Model)類型,及增加資訊網絡模型;以及,新增「智慧電網標準驗證程序(Process of Future Smart Grid Standards Identification)」規範,及對於專業應用領域區分「輸配電(Transmission and Distribution)」、「家庭to電網(Home-to-Grid)」、「建築to電網(Building-to-Grid)」、「工業to電網(Industry-to-Grid)」、「車輛to電網(Vehicle-to-Grid)」、「再生能源(Distributed Renewables, Generators, and Storage)」、「商業與政策(Business and Policy)」分別進行研析實務應用;再者,亦研訂「互通性基礎資訊知識(Interoperability Knowledge Base)」、「高位階發展指導方針(High-level framework development guide)」、「互通性程序參考手冊(Interoperability process reference manual)」等等重要遵循規範。 未來NIST及SGIP將與能源部(Department of Energy)、聯邦電力管理委員會(Federal Energy Regulatory Commission)共同合作,依據互通性標準2.0版所研議制訂規範,及重要因應議題,陸續規劃展開各項推動方案,共同促進美國智慧電網建設與應用發展。
淺談我國經濟部能源局建築能源效率管制措施淺談我國經濟部能源局建築能源效率管制措施 科技法律研究所 2013年3月25日 壹、事件摘要 行政院2012年9月份核定「經濟動能推升方案」,擘畫台灣2030年經濟藍圖。在該方案中,乃明示能源永續發展的重要性。經濟部能源局於2013年3月份公告修正「指定能源用戶應遵行之節約能源規定」,針對22,349家空調設備用電大之觀光旅館、百貨公司、零售式量販店、連鎖超級市場、連鎖便利商店、連鎖化妝品零售店、連鎖電器零售店及銀行、證券商、郵局、大眾運輸場站及轉運站等合計11類業者,實施「冷氣不外洩」、「禁用白熾燈泡」及「室內冷氣溫度限值」規定,預估每年可節省2,158萬度電。 經濟部能源局表示,11類服務業100年總用電量約71億度,其中空調用電量約占41%。觀鄰近中國大陸、南韓、日本政府均已針對營業場所訂有夏季室內空調溫度,並由公部門帶頭示範。台北市政府自2011年起亦開始推動「營業及辦公場所室內冷氣平均溫度須保持在攝氏二十六度以上」規定,實施至今有效促使約700家能源用戶(契約容量超過300kW)之空調均溫維持於二十六度,實施結果由99年不合格率32.3%,至101年不合格率降低為4.9%,顯示執行該規定有效可行。 貳、重點說明 經濟部能源局新修正公告之「指定能源用戶應遵行之節約能源規定」,乃著眼於建築物內部耗能之管制,而該管制措施乃近年來歐、美等先進國家亟力促進推動的建築能源效率(energy efficiency)議題。 參、事件評析 據統計,建築物耗能占人類經濟活動總碳排放量40%,而台灣地區舊建築物約莫占整體建築物97%,如何有效提升舊建築物本身之能源效率為重要課題。查內政部建築研究所之相關研究,建築物節能主要含括三個面向 - 外殼節能、空調節能及照明節能,因建築外殼節能為內政部營建署之管轄範疇,故經濟部能源局僅就建築物之空調節能及照明節能進行管制,本文將以美國聯邦能源部(Department of Energy, DOE)相關之法制政策為比較探討。 美國聯邦政府於2011年2月份正式啟動「更佳建築倡議」(Better Building Initiative),於2012年12月份能源部(Department of Energy, DOE)發布之進度報告(Progress Report)指出,目前建築能源效率存有若干投資障礙,第一,尚缺少能源效率投資成本節省之實證數據;第二,尚缺少潛在市場和技術解決方案之相關資訊;第三,能源效率作為商業最佳實踐尚未普遍被接受。基此,能源部將致力於促進能源效率投資並強化聯邦公部門示範作用等手段。 在促進能源效率投資上,因市場尚缺乏相關數據資訊,難就能源效率之市場價值進行驗證;將研議相關機制,作為未來融資和建築物改善的基礎。另在聯邦公部門強化示範作用上,將透過聯邦能源管理計劃(Federal Energy Management Program, FEMP)和節能績效契約(Energy Savings Performance Contract, ESPC),持續強化能源技術服務公司(Energy Service Companies, ESCO)進行聯邦建築物節能效益之提升和擔保。 此外,於該倡議旗下之「更佳建築挑戰」(Better Building Challenge)乃鼓勵民間部門之參與。以美國百貨業龍頭梅西百貨(Macy)為例,其承諾將透過能源資訊系統(EMS)之使用、觀察及分析,找出佔地一億七千九百萬平方呎的商業樓地板面積之關鍵能源機會。照明方面,該公司也以超過一百萬盞LED燈之替換與重點照明,在過去三年內減少了百分之七十的照明能源消耗。 綜上觀察,我國能源局新修正「指定能源用戶應遵行之節約能源規定」下「禁用白熾燈泡」規定,乃禁止十一類業者使用二十五瓦特以上之白熾燈泡於一般照明用途,近似於美國梅西百貨於「更佳建築挑戰」下所承諾之LED重點照明之實踐。此外,借鏡美國經驗,我國宜研議建立起台灣建築能源效率數據資訊之系統資料庫,助於未來舊建築改善市場之發展。
人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例 資訊工業策進會科技法律研究所 蔡宜臻法律研究員 2018年11月27日 壹、事件摘要 美國係推動人工智慧用於醫療服務的領航國家,FDA轄下的數位健康計畫(Digital Health Program)小組負責針對軟體醫療器材規劃新的技術監管模式,在過去五年中,該計畫發布了若干指導文件 ,嘗試為醫用軟體提供更為合適的監督管理機制。但由於指導文件並非法律,監管的不確定性依舊存在,因此近兩年 FDA推動修法並做成多項草案與工作計畫,望以更具約束力的方式回應軟體醫療器材最新技術於臨床之適用。當中最為重要的法制變革,便是2016年底國會通過之《21世紀治癒法》(21st Century Cures Act)。該法重新定義了醫用軟體的監管範圍,一般認為是對人工智慧醫用軟體的監管進行鬆綁,或有助於人工智慧醫用軟體的開發與上市。然而在新法實施近兩年以來,實務上發現人工智慧的技術特質,會導致在進行某些「臨床決策支援之人工智慧軟體」是否為醫療器材軟體之認定時,產生極大的不確定性。對此FDA也於2017年12月作成《臨床與病患決策支持軟體指南草案》(Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration),望能就部份《21世紀治癒法》及其所修正之《聯邦食品藥物化妝品法》(Federal Food, Drug, and Cosmetic Act, FD&C Act)[1]裡的規範文字提供更為詳細的說明。 本文望能為此項法制變革與其後續衍生之爭議進行剖析。以下將在第貳部分重點說明美國2016年頒布的《21世紀治癒法》內容;在第參部份則針對人工智慧技術用於醫療臨床決策支援所發生之爭議進行分析;最後在第肆部份進行總結。 貳、重點說明 2016年12月美國國會頒布了《21世紀治癒法》,在第3060節明確界定了FDA對數位健康產品(Digital Health Products)之管轄範圍,將某些類型的數位健康產品排除在FDA醫療器材(medical device)定義之外而毋須受FDA監管。此規定亦修正了美國《聯邦食品藥物化妝品法》第520節(o)項有關FDA排除納管之軟體類別之規定。 根據新修正的《聯邦食品藥物化妝品法》第520節(o)(1)項,美國對於醫用軟體的監管範疇之劃設乃是採取負面表列,規定以下幾種類型的軟體為不屬於FDA監管的醫用軟體: 行政管理目的[2];或 目的在於非關診斷、治療、緩解、預防或病症處置之健康維持或健康生活習慣養成[3];或 目的在於進行電子化的個人健康紀錄[4];或 目的用於傳輸、儲存、格式轉換、展示臨床研究或其他裝置資料與結果[5];或 同時符合以下四點之軟體: (1)不從體外醫療器材或訊號蒐集系統來讀取、處理或分析醫療影像或訊號[6]。 (2)目的在於展示、分析或印製病患醫療資訊,或其他醫療訊息(例如:偕同診斷之醫療研究、臨床處置指南)[7]。 (3)目的在於替醫療專業人員就疾病或症狀之預防、診斷或處置提供支持或臨床建議[8]。 (4)使醫師在使用該軟體時尚能獨立審查「臨床建議產生之基礎」,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議[9]。 雖然大多數被排除的類別相對無爭議,但仍有一部分引起法律上不小的討論,即《聯邦食品藥物化妝品法》第520節(o)(1)(E)項所指涉的某些類型之臨床決策支援軟體(Clinical Decision Support Software,以下簡稱CDS軟體)。 CDS軟體係指分析數據以幫助醫療手段實施者(例如:醫師)做出臨床決策的軟體。多數以人工智慧為技術基礎的醫療軟體屬於此一類型,比方病理影像分析系統。根據《21世紀治癒法》與《聯邦食品藥物化妝品法》,CDS軟體是否被排除在FDA的管轄範圍之外,取決於該軟體是否「使醫師在使用該軟體時尚能獨立審查『臨床建議產生之基礎』,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議」[10]。若肯定,則將不被視為FDA所定義之醫療器材。為使此一規定更加明確,FDA於2017年12月8日發布了《臨床與病患決策支持軟體指南草案》,該指南草案針對如何評估軟體是否能讓醫師獨立審查臨床建議產生之基礎進行說明。FDA表示該軟體至少要能清楚解釋以下四點[11]: 該軟體功能之目的或用途;及 預期使用者(例如超音波技師、心血管外科醫師);及 用於產生臨床建議的原始資料(例如患者的年齡和性別);及 臨床建議產生背後之邏輯或支持證據 後續方有機會被FDA認定係令醫療專業人員使用該軟體時,能「獨立審查」臨床建議產生之基礎。換言之,指南草案所提的四點,為FDA肯認醫師在使用軟體時尚能「獨立審查」之必要前提。除此之外,指南草案尚稱預期使用者必須能自己做成與軟體相同之判斷,並且要求「用於生成臨床建議與演算邏輯的原始資料必須可被預期使用者辨識、近用、理解,並為公眾可得」[12],進而方有機會符合《聯邦食品藥物化妝品法》第520節(o)(1)(E)(iii)之規定;若該軟體亦同時符合第520節(o)(1)(E)之其他要件,則有望被劃分為非醫療器材而不必受FDA監管。 由於規範內容較為複雜,指南草案亦提供案例說明。比方若一糖尿病診斷軟體是由醫生輸入患者參數和實驗室測試結果(例如空腹血糖、口服葡萄糖耐量測試結果或血紅蛋白A1c測試結果),並且該裝置根據既定臨床指南建議患者的病情是否符合糖尿病的定義,可被FDA認定為「非醫療器材」[13];而諸如分析電腦斷層、超音波影像之軟體,則仍維持屬於醫療器材[14]。 另需注意的是,《聯邦食品藥物化妝品法》在第520節(o)(3)(A)(i)項亦建立「彌補性納回(claw-back)」機制,FDA需遵守通知評論程序(notice-and-comment process)以便及時發現軟體可能對健康造成嚴重危害的風險,並隨時將之納回監管範疇中。同時FDA每兩年必須向國會報告醫療器材軟體的實施經驗[15]。 參、事件評析 《21世紀治癒法》頒布至今兩年,FDA已核准多個以人工智慧為技術核心的軟體,例如在2018年2月13日通過能自動偵測可疑的大血管阻塞(large vessel occlusion, LVO),並迅速通知醫師病人可能有的中風危險的臨床決策支援軟體:Viz.AI Contact application;又比如於2018年4月11日通過利用演算法分析由視網膜攝影機(Topcon NW400)所獲得的影像,快速篩檢糖尿病病人是否有必須由專業眼科醫師治療的視網膜病變的IDx-DR。 然而,在CDS軟體以人工智慧為技術核心時,現有的法規與監管框架依舊有幾點疑慮: 一、「理解」演算法? 根據新修正之《聯邦食品藥物化妝品法》,如果CDS軟體欲不受FDA監管,醫師的決策必須保持獨立性。目前規定只要該醫療產品「企圖」(intended to)使醫師等專業人員理解演算法即可,並不論醫師是否真正理解演算法。然而,若FDA肯認理解演算法對於執行醫療行為是重要的,那麼當CDS係基於機器學習產生演算法時,具體該如何「理解」就連開發者本身都未必能清楚解釋的演算法?有學者甚至認為,CDS軟體是否受到FDA法規的約束,可能會引導至一個典型的認識論問題:「我們是怎麼知道的?(How do we know?)」[16]。對此問題,我們或許需要思考:當醫師無法理解演算法,會發生什麼問題?更甚者,未來我們是否需要訓練一批同時具備人工智慧科學背景的醫療人員?[17] 二、如何要求演算法透明度? 指南草案所提之「清楚解釋臨床建議產生背後之邏輯或支持證據」以及資料來源為公眾可得、醫生對演算法使用的資料來源之近用權限等,被認為是FDA要求廠商應使CDS軟體之演算法透明[18]。但根據FDA指南草案公告後得到的反饋,醫療軟體廠商對此要求認為並不合理。廠商認為,應該從實際使用效益來審視人工智慧或機器學習軟體所提出的臨床建議是否正確,而不是演算法是什麼、怎麼產生[19]。 三、醫療專業人員之獨立專業判斷是否會逐漸被演算法取代?未來醫療軟體廠商與醫療專業人員之責任該如何區分? FDA目前的法規與指南並未直接回應此二問題,惟其對於不被列管之CDS軟體之規定係需使醫師並非主要依賴該軟體提供之臨床建議、醫師能自己做成與軟體相同之判斷。由反面解釋,即FDA肯認部份CDS軟體具備與醫師雷同之臨床診斷、處置、決策之功能,或能部份取代醫師職能,因此需受FDA監管。是故,醫師之專業能力與人工智慧演算法相互之間具有取代關係,已是現在進行式。惟究竟醫師的判斷有多少是倚靠人工智慧現階段尚無法取得量化證據,或需數年時間透過實證研究方能研判。往後,醫療軟體廠商與醫師之責任該如何區分,將會是一大難題。 肆、結語 隨著醫療大數據分析與人工智慧技術的發展,傳統認知上的醫療器材定義已隨之改變。雖然硬體設備仍然在診斷、治療與照護上扮演極為重要的角色,但軟體技術的進步正在重新改寫現代醫療服務執行以及管理模式。這些新產品及服務為醫療器材市場帶來活水,但同時也形成新的監管議題而必須採取適當的調整措施。美國FDA針對近年來呈爆炸性發展的醫療軟體產業不斷調整或制定新的監管框架,以兼顧使用者安全與新技術開展,並於2016年通過了極具改革意義的《21世紀治癒法》,且以此法修正了《聯邦食品藥物化妝品法》。 然而,新法實施後,關於個別醫用軟體是否納為不受FDA監管的醫療器材仍有法律認定上的灰色空間。舉例而言,倍受矚目的以人工智慧為核心技術的CDS軟體,在新法框架下似乎可能存在於監管紅線的兩側。根據新修正之《聯邦食品藥物化妝品法》,一CDS軟體是否屬於醫療器材軟體,關鍵在於醫師能否「獨立審查」從而「非主要依賴」軟體所提供之臨床建議。也由於此要件概念較為模糊,FDA後續在2017年發布《臨床與病患決策支持軟體指南草案》為此提供進一步解釋,然而仍無法妥適處理人工智慧機器學習技術所導致的演算法「該如何理解?」、「透明度該如何認定?」等問題。更甚者,從整體醫療服務體系納入人工智慧協助臨床決策診斷之趨勢觀之,未來醫療專業人員的獨立判斷是否會逐漸被演算法取代?未來人工智慧軟體與醫療專業人員之責任該如何區分?都是醞釀當中的重要議題,值得持續關注。 [1] 21 U.S. Code §360j [2] FD&C Act Sec. 520(o)(1)(A) [3] FD&C Act Sec. 520(o)(1)(B) [4] FD&C Act Sec. 520(o)(1)(C) [5] FD&C Act Sec. 520(o)(1)(D) [6] FD&C Act Sec. 520(o)(1)(E) [7] FD&C Act Sec. 520(o)(1)(E)(i) [8] FD&C Act Sec. 520(o)(1)(E)(ii) [9] FD&C Act Sec. 520(o)(1)(E)(iii) [10] “Enabling such health care professionals to independently review the bases for such recommendations that such software presents so that it is not the intent that such health care professional rely primary on any of such recommendations to make clinical diagnosis or treatment decisions regarding individual patient.” FD&C Act, Sec. 520(O)(1)(E)(iii) [11] FOOD AND DRUG ADMINISTRATION[FDA], Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration (2017), .at 8 https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm587819.pdf (last visited Sep. 21, 2018) [12] 原文為 “The sources supporting the recommendation or underlying the rationale for the recommendation should be identified and easily accessible to the intended user, understandable by the intended user (e.g., data points whose meaning is well understood by the intended user), and publicly available (e.g., clinical practice guidelines, published literature)”, id, at 8 [13] FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [14]FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [15] 21th Century Cures Act, Sec. 3060(b) [16] Barbara J. Evans & Pilar Ossorio, The Challenge of Regulating Clinical Decision Support Software after 21st Century Cures. AMERICAN JOURNAL OF LAW AND MEDICINE (2018), https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3142822_code1078988.pdf?abstractid=3142822&mirid=1 (last visited Sep. 21, 2018) [17] Id. [18] Gail H. Javitt & J.D., M.P.H., ANESTHESIOLOGY, Regulatory Landscape for Clinical Decision Support Technology (2018), http://anesthesiology.pubs.asahq.org/article.aspx?articleid=2669863 (last visited Sep. 21, 2018) [19] REGULATIONS.GOV, Clinical and Patient Decision Support Software; Draft Guidance for Industry and Food and Drug Administration Staff; Availability(Dec. 8, 2017) https://www.regulations.gov/docketBrowser?rpp=25&po=0&dct=PS&D=FDA-2017-D-6569&refD=FDA-2017-D-6569-0001 (last visited Sep. 25, 2018)