德國專利商標局(DPMA)於2015年7月6日加入全球專利審查高速公路(Global Patent Prosecution Highway,簡稱GPPH),基於此,德國在現有的PPH合作基礎上拓展12個其他的合作專利局。 PPH的目的是經由雙方交流和跨國界專利檢索與審查結果的使用以加速專利登記的處理,一方面維持專利審查的品質,同時形成有效率的專利審查程序。 從2015年7月6日起,一個加速審查的申請不只在德國專利商標局之前合作的9大PPH專利局,即:中國國家知識產權局、日本專利局、英國知識產權局、美國專利商標局、韓國知識產權局、加拿大知識產權局、芬蘭國家專利注冊委員會、新加坡知識產權局、奧地利專利局,還可以在下述12個國家或地區試行,即:澳大利亞知識產權局、丹麥專利商標局、俄羅斯聯邦知識產權局、匈牙利知識產權局、西班牙專利商標局、瑞典專利注冊局、葡萄牙工業產權局、愛沙尼亞專利局、以色列專利局、挪威知識產權局、冰島專利局、北歐專利局(包括丹麥專利商標局、挪威知識產權局、冰島專利局)。 對申請人來說這個制度的優點是,未來若申請人的專利申請案的請求項在參與GPPH的任一國家或地區的專利機構已經被認為具有可專利性,那麼申請人可以要求作為後續申請受理局的德國專利商標局進入簡易程序,以獲得加速審查。
智慧財產法院成立及運作的政策 正式啟動司法院於94年年終記者會時,正式發佈我國智慧財產法院即將成立及運作的政策。有鑒於國內外企業在台的專利、商標、著作權等紛爭越來越多,為了節省司法資源、快速釐清企業糾紛、不耗損社會資源等目的,智慧財產法院乃為司法現代化相當重要的一環。 我國的智財官司時,多是以刑事訴訟為主附帶民事官司,有別於歐美各國的智慧財產案件多以民事訴訟為主。未來智慧財產法院所管轄案件除了民事訴訟事件、刑事訴訟案件外,還包括有行政訴訟事件與強制執行事件,集中事權,專責審理智財權相關案件。此外,為了因應科技界日新月異的技術發展,在智慧財產法院扮演關鍵角色的「技術審理官」,主要負責輔助法官從事專業技術問題之判斷,因此除了由全職公務員-專利審查官或是商標審查官擔任外,亦可任用公私立大專院校之老師或專業研究機構之研究員。 另一方面,為避免大型企業利用資金優渥之優勢,打壓小型科技公司的發展,智慧財產訴訟中的「假處分」聲請規定,相較於現行民事訴訟法規定嚴格許多,假處分聲請人除提供擔保金外,還必須「強制釋明」理由,若是釋明不足者,法院可駁回其聲請。 目前司法院已研擬完成「智慧財產法院組織法草案」及「智慧財產案件審理法草案」的全部條文,並公布在司法院網站上,預定在立法院下會期提交立法。
柏克萊市開啟奈米科技管理規範的先河美國柏克萊﹙Berkley﹚市議會日前無異議通過既有有害物質法令修正之決議,企圖涵蓋奈米物質之情形,此其為奈米科技地方性立法之首例。此項行動迫使研究人員及製造人必須於研究或生產過程中,申報所使用的奈米材料,以及提出有效管理奈米物質的證明。 在商業世界當中,奈米科技的目標是在原子或分子層次,藉由改變或創造新的成份,以發展出新的產品及材料。不過,這些材料是否會產生環境及健康方面的問題,目前尚不得而知。 此項修正已蘊釀兩年。市府官員表示,此項法規修正主要在於監管奈米新創事業﹙startups﹚或小型企業﹙small business﹚,而非國家型實驗室﹙the national lab﹚所造成的影響,因為後者目前係由美國能源部﹙Department of Energy﹚所管理,地方法規對其並無管理權限。一開始,國家實驗室相當反對柏克萊市的這項計畫;不過,經過溝通其表示未來將繼續支持該市市府的行動。 負責柏克萊市有害物質管理事務的Nabil Al-Hadithy表示,他期許這項新法成為其他城市有效管理奈米物質的榜樣,並希望其他城市能夠將這樣類型的規範,有效運用在全加州的健康及安全法規上。
英國資訊委員辦公室提出人工智慧(AI)稽核框架人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。 AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。 「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。 ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。