本文為「經濟部產業技術司科技專案成果」
美國最高法院於2010年6月28日對Bilski v. Kappos案作出5比4的拉距判決。原告Bilski為一家能源產品公司,其就一種讓買家或賣家在能源產品價格波動時,可用來保護、防止損失或規避風險的方法申請商業方法專利(Business Method Patent)。但美國商標專利局審查人員以此發明只是一種解決數學問題,而為抽象而無實體呈現的想法為理由而拒絕。經該公司於專利上訴委員會上訴無效後,繼續上訴至聯邦巡迴法院與最高法院。 最高法院拒絕適用前審以美國專利法第101條(35 U.S.C. §101),創造發明是否為有用的、有形的及有體的結果作為認定方法專利的標準。而最高法院多數意見係採用「機械或轉換標準」(machine or transformation test)為專利法第101條可專利性之標準,認定如果創造發明的方法能與機械器具或配件相結合或轉換為另外一種物品或型態時,即認定此方法具可專利性。惟經法院適用此標準後,仍認定原告的商業方法不具可專利性。 一些批評認為,目前「方法」和「轉換」等關鍵字的定義還不清楚,而該判決並沒有澄清這些爭議,甚至帶來更多的疑惑。美國律師Steven J. Frank認為,雖然最高法院的意見放寬了可專利性的標準,但是並沒有提及認定可專利性的其他標準。 該判決亦未明確指出商業方法究竟要符合哪些實質要件,方具有可專利性。相當多的電子商務中所使用的「方法」都有專利,最有名的大概就是亞馬遜公司的「一鍵購買(one-click)」的網路訂購方法,還有Priceline公司「反向拍賣」(reverse auction)的方法等。許多電子商務、軟體及財務金融相關業者在這個判決之後,對於商業方法的可專利性也感到相當的困惑。如果有方法專利的存在,那麼擁有這些專利的公司就可以放心了;但是,如果方法沒有可專利性,那麼對於現在擁有方法專利的權利人不啻是一個很壞的消息。是否一些比較不抽象的方法就具有可專利性,而比較抽象的方法就專利性,判定的標準又在哪裡,對此,法院並沒有加以說明,在法院明訂出更明確的標準之前,目前仍留給美國商標專利局來判定。
菲律賓基因改造茄子被迫停止田間試驗菲律賓為亞洲國家間第一個將基因改造作物(基改玉米)商業化並用於食品和動物飼料者,而另一項正等待商品化的基改作物,基因改造茄子,原預計於今(2011)年底完成7項試驗並於明年達成商品化的目標,卻因未符合地方政府法規所要求的公眾諮詢程序而被迫暫時中斷其中2項實驗。 2010年12月,菲律賓Davo市市長因申請本案田間試驗之UP Mindano公司未遵守應於市政府內張貼公開資訊之法定義務,以違反基因改造作物環境釋放之法規為由,向該公司發出禁止令並銷毀植株,其田間試驗因此延誤了6個月以上。無獨有偶的,作為菲律賓基改作物主管機關的植物產業局,也以同樣的理由中止另一項在Visayes國立大學所進行的基因改造作物田間試驗。 Davo市農業辦公室Leonardo Avila III主任表示,就該公司就試驗田所設立的藩籬實際狀況來看,雙方對於嚴格密閉的田間試驗(strictly confined field trial)有理解上的落差。面對UP Mindano公司於期間未盡公開資訊義務以進行充份溝通的指控,該公司負責田間試驗的科學家Rasco表示,所有爭議皆已透過直接或間接的方式於報紙和公開論壇中予以釐清。甚至嘗試著透過說明會教育大眾關於基因改造茄子的風險和優點,更強調茄子沒有異花授粉植物所會造成的基因汙染問題。 從法規面觀察,此一事件所透露的問題在於,即便一國中央法規允許基因改造作物之環境釋出,地方政府亦有可能藉由地方法規來落實其限制或阻擋基因改造作物之政策或目的,因而中央和地方間之政策歧異也將會成為GMO推展時必須面對的法制議題。
川普簽署行政命令以促進美國AI領域的發展美國總統川普於2019年2月11日簽署一項行政命令,發布「美國AI倡議」(American AI Initiative),旨在確保美國在AI領域的領導地位,川普並說道:「美國在AI領域的領導地位對於維護美國的經濟和國家安全至關重要」。「美國AI倡議」從五大方面來促進美國在AI領域的領導地位,包括: (一) 投資AI的開發 指示聯邦機構在研發任務及編排預算時,將AI作為優先投資項,確保美國對於AI基礎研發的長遠重視,此外,政府機構並應說明如何將預算用於AI研發開支,以增進對於AI投資的評估。 (二) 數據和資源共享 將聯邦政府中所擁有的統計數據資料、運算模型及運算資源提供給AI研發人員,促進交通和醫療保健等領域的AI發展。 (三) 建立政府標準及監管 白宮科技政策辦公室和美國國家與技術研究院(NIST)制定標準,以提升AI系統的「可靠、穩健、值得信賴、安全、可移轉和具協同性」。透過為不同技術和產業的AI制定使用指南,確保AI的使用安全和適當監管。 (四) 人才培訓 要求各機構為AI進步形成的就業市場變化做好準備,並考慮透過技能培訓課程、獎學金和學徒制度,因應市場人力產生之變化。 (五) 國際參與 與其他國家制定合作策略,協同AI技術的開發,同時確保AI領域之開發符合和不損及美國人的價值觀和利益。 此項倡議雖提及許多面向之發展,但仍然缺少發展細節,亦未提及計畫新資金的投入,因此,許多人對此倡議皆提出質疑。曾協助歐巴馬政府制定AI報告的哈佛大學教授Jason Furman即表示,此「倡議」雖令人鼓舞,但僅是邁出第一步,關鍵的考驗將在於是否能以強而有力的方式確實貫徹執行倡議中的內容,此倡議仍欠缺細節及執行面之部分。
歐盟執委會提出「具可信度之人工智慧倫理指引」歐盟執委會人工智慧高級專家小組(High-Level Expert Group on Artificial Intelligence)於2019年4月8日公布「具可信度之人工智慧倫理指引」(Ethics Guidelines For Trustworthy AI)。該指引首先指出,具可信度之人工智慧需具備三個關鍵特徵:(1)合法(Lawful):應遵守所有適用於人工智慧之法規;(2)合乎倫理(Ethical):確保人工智慧符合倫理原則與價值;(3)健全(Robust):自技術與社會層面觀之,避免人工智慧於無意間造成傷害。 該指引並進一步指出人工智慧應遵守以下四項倫理原則: (1) 尊重人類之自主權(Respect for Human Autonomy):歐盟之核心價值在於尊重人類之自由與自主,與人工智慧系統互動之個人,仍應享有充分且有效之自我決定空間。因此,人工智慧之運用,不應脅迫、欺騙或操縱人類,人工智慧應被設計為輔助與增強人類之社會文化技能與認知。 (2) 避免傷害(Prevention of Harm):人工智慧不應對人類造成不利之影響,亦不應加劇既有的衝突或傷害。人工智慧之系統運行環境應具備安全性,技術上則應健全,且確保不會被惡意濫用。此外,弱勢族群應於人工智慧運用中受到更多關注,並被視為服務對象。 (3) 公平(Fairness):人工智慧系統之開發、布建與利用,必須具備公平性。除了透過實質承諾與規範,進行平等與公正之利益與成本分配外,亦須透過救濟程序確保個人或特定族群不受到歧視與偏見之侵害,並可對人工智慧之自動化決策結果提出質疑,且獲得有效之補救。 (4) 可解釋性(Explicability):人工智慧應盡量避免黑箱(Black Box)決策,其系統處理程序須公開透明,並盡可能使相關決策結果具備可解釋性,分析特定訊息可能導致之決策結果,此外亦需具備可溯性且可接受審核。