國內藥廠發起外銷策略聯盟

  經濟部工業局將協助國內製藥業成立「藥廠外銷策略聯盟」,集合藥界力量共同打開外銷市場,希望至少推動十幾個學名藥外銷,而明年外銷產值可達 20 億元,每年成長 20 %,五年後外銷產值可到 100 億元;主要鎖定美、日、歐為主的 PIC/S (國際藥品稽查協合會)市場,由熟悉市場的專家來協助製藥界一起拓展海外市場,目前已有近十家業者有意加入此聯盟。


  由於過去國內藥廠都主攻健保市場,不過未來成長有限,國內藥廠必須積極拓展海外市場,才可以保持競爭力。今年 4 月,日本實施新藥事法後,採取產銷分離,國內製藥業者有機會爭取到代工的機會,工業局將協助國內業者爭取日本代工注射劑、口服液等機會,以及在台採購原料藥和其他藥劑。以歐盟為主的 PIC/S 市場,近年會員增多,美國 FDA 也有意加入,國內藥廠如能爭取成為會員,可以降低藥廠重複檢驗的成本,有利拓銷海外市場。


  國內藥廠拓銷海外市場已漸有成績,如優良藥廠和永光化學合作避孕藥 GyMiso ,與歐洲 HRA 藥廠合作進軍歐盟市場,並順利通過 PIC/S 查核,取得產品製造許可。生達製藥和永信製藥都在美國設廠,努力耕耘美國市場十年後,已開始賺錢,不過仍希望和國內業者合作。南光則已有和日本代工非 PVC 材質注射劑的經驗。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 國內藥廠發起外銷策略聯盟, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=411&no=67&tp=1 (最後瀏覽日:2026/02/13)
引註此篇文章
你可能還會想看
日本經濟產業省利用巨量資料(BIG DATA)及人工智慧(AI)開發及測試新的經濟指標

  日本經濟產業省利用網絡積累巨量資料(BIG DATA)及人工智慧(AI)技術,應用民營企業相關資訊,開發和測試新經濟指標,分別於2017年7月19日及2018年1月8日公開該指標。為達到及早準確掌握經濟動向,對巨量資料等新資料之利用期待越來越高,政府部門也將利用巨量資料及人工智慧技術等方法,針對統計技術進行改革,。   新開發之指標有:1.SNS×AI商業信心指數(SNS×AI景況感指数):乃是透過人工智慧抽取關於商業信心的網路文章,並進行情緒(正/負)評估計算指數,期待有效地估計以每日為頻率之商業信心。2.SNS×AI礦工業生產預測指數(SNS×AI鉱工業生産予測指数):利用人工智慧選取有關工作和景氣之網路相關文件,結合「開放數據」之統計等技術,並利用人工智慧「機械學習」之手法,來預測「工業生產指數」。3.銷售點資訊管理系統(POS,point-of-sale)家電量販店銷售趨勢指標(POS家電量販店動向指標):透過收集具有銷售點資訊管理系統(POS)的家用電子大型專賣店的銷售資料,期待可以掌握每一日之「銷售趨勢」。   新的指數與既存統計指數,如景氣動向指數、中小企業信心指數、工業生產指數、商業動態統計等,其調查週期、公布頻率等,既存指數每月調查公布,新指數則進步至每日調查或每週公布等,在計算及呈現頻率上較既有更為精細。日本政府並設立「Big Data-STATS」網站,以實驗性質公佈上述經濟指標,並廣泛收納民眾意見以提高新指標的準確性。

美國平等就業機會委員會發布「評估就業篩選程序中使用軟體、演算法及AI之不利影響」技術輔助文件

美國平等就業機會委員會(Equal Employment Opportunity Commission, EEOC)於2023年5月18日發布「根據 1964 年《民權法》第七章評估就業篩選程序中使用軟體、演算法和AI之不利影響」(Assessing Adverse Impact in Software, Algorithms, and Artificial Intelligence Used in Employment Selection Procedures Under Title VII of the Civil Rights Act of 1964)之技術輔助文件(下簡稱「技術輔助文件」),以防止雇主使用自動化系統(automated systems)對求職者及員工做出歧視決定。 該技術輔助文件為EEOC於2021年推動「AI與演算法公平倡議」(Artificial Intelligence and Algorithmic Fairness Initiative)計畫的成果之一,旨在確保招募或其他就業決策軟體符合民權法要求,並根據EEOC 1978年公布之「受僱人篩選程序統一指引」(Uniform Guidelines on Employee Selection Procedures, UGESP),說明雇主將自動化系統納入就業決策所應注意事項。 當雇主對求職者與員工做出是否僱用、晉升、終止僱傭,或採取類似行動之決定,是透過演算法決策工具(algorithmic decision-making tool),對特定種族、膚色、宗教、性別、國籍或特定特徵組合(如亞洲女性),做出篩選並產生不利影響時,除非雇主能證明該決策與職位工作內容有關並符合業務需求,且無其他替代方案,否則此決策將違反《民權法》第七章規定。 針對如何評估不利影響,雇主得依UGESP「五分之四法則」(four-fifths rule),初步判斷演算法決策工具是否對某些族群產生顯著較低的篩選率。惟EEOC提醒五分之四法則推導出之篩選率差異較高時,仍有可能導致不利影響,雇主應依個案考量,使用實務常見的「統計顯著性」(statistical significance)等方法進一步判斷。 其次,當演算法決策工具係由外部供應商所開發,或由雇主授權管理人管理時,雇主不得以信賴供應商或管理人陳述為由規避《民權法》第七章,其仍應為供應商開發與管理人管理演算法決策工具所產生之歧視結果負責。 最後,EEOC鼓勵雇主應對演算法決策工具進行持續性自我評估,若發現該工具將產生不利影響,雇主得採取措施以減少不利影響或選擇不同工具,以避免違反《民權法》第七章。

歐盟發布《歐洲資料治理規則》草案

  歐盟執委會於2020年11月25日公布「歐洲資料治理規則」(Proposal for a Regulation on European data governance (Data Governance Act))草案。本立法草案係延續同年2月發布「歐洲資料戰略」(European data strategy)所提出之立法規劃,針對該戰略所揭示的資料治理政策願景,於制度面予以明文化。而本草案亦為該戰略發布後,首次提出的具體性措施。其制定的主要目的,在於透過強化資料中介機構(data intermediaries)的公信力、以及優化歐盟整體的資料共享機制,來提升資料的可取得性(availability)。   依草案條文內容,其主要立法面向如下: (1)界定本法的立法目的,在於規範歐盟內部再利用公部門所持有之特定類型資料的條件,確立資料共享服務的通報與監督框架,並針對基於利他(altruistic)目的蒐集處理資料之實體(entities),建構自願註冊的制度;另一方面則進行本法的名詞定義。 (2)公部門資料再利用機制:整體性規範由公部門所持有、但涉及商業機密、智慧財產權、個資等之資料再利用的一致性標準。其以保護既有的營業秘密、個資、智財權等為前提,確立該些資料再利用的標準作法(如原則以非專屬形式再利用、可收取合理費用)。有意再利用上述資料的公部門,應於技術面保護其隱私與機密性。 (3)針對資料共享服務供應商的通報機制:要求提供資料共享服務的供應商,於正式對外提供其服務前,應先向各成員國的權責機關通報其業務,藉以增加外界對共享個資與非個資之資料機制的信賴度,同時降低資料共享的交易成本。同時,資料共享服務供應商於資料交換應保持中立,不能為其他目的使用資料;其共享服務應以開放及協作的方式進行,並優化自然人或法人查閱與控制其資料的環境,藉以強化個資自主權。 (4)資料利他主義(data altruism)的明文化:定義非營利、具普遍性共同目標之組織,得向歐盟註冊成為資料利他主義組織。透過此認證制度,增加組織公信力,以推動個人或公司出於公共利益,自願提供資料。同時,授權歐盟執委會可制定通用之歐洲資料利他主義同意書(European data altruism consent form),減少個別收集資料使用同意書之成本。 (5)成員國資料共享權責機關之職責:其應公正、透明、一致、及時履行其職責,監督與實施資料共享服務供應商與資料利他主義組織的通報與註冊機制。例如,其有權要求資料共享服務供應商提交必要訊息,以確保其作為是否符合本法要求。同時,權責機關成員不得為資料共享服務的供應商。 (6)歐洲資料創新委員會(European Data Innovation Board):此為一專家小組之設置要求,負責協助成員國權責機關之作法,遵循資料治理法所訂標準。

英國交通運輸部公布「交通運輸之未來」公眾諮詢文件

  英國交通運輸部及聯網與自動駕駛車中心(Centre for Connected and Autonomous Vehicles, CCAV)於2018年7月30日公布「交通運輸之未來」公眾諮詢文件(Future of Mobility-Call for Evidence),提及未來之交通運輸趨勢: (1) 更加潔淨之交通運輸工具(cleaner transport):因電池價格下降、電動車技術之改善、開發替代燃料等因素,可減少現有交通工具之碳排放,並作為後續新技術研發基礎。英國政府已明確表示預計於2040年前讓新車及貨車實現零碳排目標。 (2) 自動化(automation):因感測器技術進步以及演算法和人工智慧之快速發展,使交通運輸自動化程度大幅提升。英國政府預計2021年可讓完全自動化駕駛車輛於道路行駛。 (3) 資料及聯結(data and connectivity):未來聯網車輛間可互聯,亦可與交通號誌互聯,透過即時路況告知,以避免道路壅塞。 (4) 新模式(new modes):英國已使用無人機於緊急服務或基礎設施勘查,未來可能有垂直起降之車輛出現,而計程車及公車之分別亦逐漸模糊。 (5) 交通運輸共享化(shared mobility):利用共享車輛可降低交通壅塞及廢氣排放,如公共自行車、商業化之車輛共乘。 (6) 不斷轉變的消費者態度(changing consumer attitudes):消費者已漸漸期待所有交通工具的預約叫車及支付,皆可透過手機進行,主管機關則應考量消費者需求,確保相關交通服務的利用。 (7) 新商業模型(new business models):未來交通運輸已有新商業模式出現,如公共運輸行動服務(Mobility as a Service)。   英國政府期望透過上述交通運輸變革,能帶來更安全、便利及潔淨之交通,並實現更好的生活品質。

TOP