稻米基因定序大功告成,有助解決全球糧食問題

  由十個國家的科學家共同努力完成的「國際水稻基因組定序計畫( IRGSP )」,其研究成果刊登於最新一期的 Nature 期刊。科學家們共同解讀水稻 12 條染色體的基因密碼,未來將根據這些密碼來控制水稻的生長和結穗,可望有助解決全球糧食問題。


  依聯合國統計資料顯示,水稻是全球人口
20% 的食物能量來源,而在全球人口持續擴增之情況下, 2025 年必須提高 30% 的水稻產量,才能擁有足夠糧食。


  自
1998 年起,本計畫即在日本主導之下,與中華民國、韓國、英國、加拿大、美國、巴西、印度、法國與中國等國之定序實驗室進行分工、共享,定序後的 DNA 序列將放在公開序列資料庫,供研究人員使用;而本計畫已在 2002 年底完成草圖,並陸續完成彌補空隙與基因註解工作。本計畫之成果於近幾年來,已陸續協助辨識數個影響重要農藝性狀的基因,例如,影響植物生長勢、提高水稻產量的基因、改變水稻光週期、使優良栽培種得以擴展種植面積的基因、控制植株高度的基因等。


 水稻基因組定序工作之完成宣告後基因組時代的正式來臨,而完成此一世紀任務之際,善用相關經驗與新知,以投入水稻的深入研究工作,將能台灣水稻及其他作物的遺傳育種研究提供實際幫助。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 稻米基因定序大功告成,有助解決全球糧食問題, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=414&no=67&tp=1 (最後瀏覽日:2026/01/23)
引註此篇文章
你可能還會想看
.Akamai 一案改變了邦巡迴法院認定間接侵權的判斷

  2014年Akamai Technologies針對最高法院提起上訴,因此發回聯邦巡迴法院重審,而後上訴法院認為Limelight Networks確實侵害Akamai的專利,Akamai並獲得$ 45.5萬美元的損害賠償。 2006年,Akamai Technologies公司(下稱Akamai)在美國馬薩諸塞州地方法院起訴Limelight Networks(下稱Limelight),指控Limelight侵害Akamai美國專利號6108703。原告Akamai的專利是有效傳送網頁內容的方法專利。而被告Limelight是經營伺服器網路的公司,和Akamai該專利的差別在於Limelight指示用戶完成其中一個修改的步驟。   本案從2006年一直持續到2014年向最高法院上訴為止,都是依據美國專利法第271條規定直接和間接侵權的概念。在原審認為「實施該方法專利」的侵權行為,是要求實施方要獨立完成該侵權行為,所以Limelight不能被視為直接侵權。又因為Limelight公司並沒有滿足單一實體規則(single-entity rule),控制或指示(control or direction)其實施方完成其他的專利之方法步驟,所以不用負共同侵權責任。   但上訴聯邦巡迴法院一致贊成Akamai被侵權,並指出如果被告 Limelight知道並使用專利權人Akamai的專利,而且執行大部分的步驟,只保留一項步驟未執行,進而引誘用戶執行該方法專利的最後一個步驟,且用戶真的執行了該最後一步驟, Limelight就構成美國專利法271(b)間接侵權中的引誘侵權。

美國國家標準暨技術研究院發布「全球AI安全機構合作策略願景目標」,期能推動全球AI安全合作

美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)於2024年5月21日提出「全球AI安全機構合作策略願景目標」(The United States Artificial Intelligence Safety Institute: Vision, Mission, and Strategic Goals,下稱本策略願景),美國商務部(Department of Commerce)亦於2024年參與AI首爾峰會(AI Seoul Summit)期間對外揭示本策略願景,期能與其他國家攜手打造安全、可靠且可信賴之AI生態系。 由於AI可信賴與否往往取決於安全性,NIST指出當前AI安全所面臨的挑戰包含:一、欠缺對先進AI之標準化衡量指標;二、風險測試、評估、驗證及確效(Test, Evaluation, Validation, and Verification, TEVV)方法不健全;三、欠缺對AI建模後模型架構與模型表現間因果關係的了解;四、產業、公民社會、國內外參與者等在實踐AI安全一事上合作程度極為有限。 為因應上述挑戰並促進AI創新,NIST在本策略願景中擬定以下三大戰略目標:(1)推動AI安全科學發展:為建立安全準則與工具進行技術合作研究,並預先部署TEVV方法,以利評估先進AI模型之潛在風險與應對措施;(2)推展AI安全實務作法:制定並發布不同領域AI風險管理之相關準則與指標,以達到負責任設計、開發、部署與應用AI模型與系統之目的;(3)支持AI安全合作:促進各界採用前述安全準則、工具或指標,並推動全球合作,以發展國際通用的AI安全風險應對機制。

韓國通過個人資料保護法修法並對其執行命令指引提出修正草案

2023年9月27日,韓國個人資訊保護委員會(Personal Information Protection Commission, PIPC)就《個人資料保護法》(Personal Information Protection Act, PIPA)執行命令之指引修正(Enforcement Decree Amendment Guide)草案展開諮詢,諮詢將持續至2023年11月30日為止。韓國於2023年3月修正個人資料保護法,該修正於2023年9月15日生效,而指引修正之目的即是協助各界能夠遵循新修法後的義務,因此該指引草案詳細說明了修法後有關資料蒐集、獲得當事人同意之條件、使用和提供存取要求等內容。最終版的指引預計將於2023年12月發布。 韓國個人資料保護法於2023年的修訂範圍廣泛,特別是關於跨領域和行業個人資料處理標準等,使得公私部門中的資料處理人員和資料隱私人員必須深入瞭解此些變化,以確保能遵守最新的法律規定。 修訂後的韓國個人資料保護法強調實際保障資料主體的權利,並調整網路和實體業務之間不一致的資料處理標準,藉以迎接全面的數位轉型。此次韓國個人資料保護法修正重點如下: 1.強調確保資料主體的權利,即使在緊急情況下蒐集或處理個人資料時仍須提供足夠的保護措施。 2.釐清並調整網路和實體業務的不明確或不一致的法規,例如資料外洩的報告和通知時限、蒐集和利用14歲以下兒童個人資料需要獲得法定監護人同意的要求,以及對違規行為實施行政處罰的標準等。 3.要求處理大量個人資料的公共機構需強化保護措施,包括應分析和檢查存取記錄、指定負責每個系統的管理員,以及通知使用公共系統未經授權存取個人資料的事件等。 4.跨境資料傳輸條件調整為可傳輸至保護程度與韓國相當的國家或地區;並調整處罰金額,防止處罰金額過高超出責任範圍。。 韓國PIPC主委表示,此次對韓國個人資料保護法的修訂,反映了對資料主體權利更強大保護的需求。同時,考慮到此次修法的變動較大,建議各領域從業人員皆須仔細確認相關法遵內容,PIPC將針對不同領域需求來量身定制說明活動,積極提高大眾對修訂後的《PIPA》內容的理解程度,以確保韓國個人資料保護法修正後的實施。

淺析自駕車道路實驗規範-以日本法為對象

TOP