歐盟對中小型生技公司提供藥政管理之費用優惠及專業協助

  中小型公司是生技產業發展的主力,然藥物研究發展模式風險及資金需求甚高,對資金不豐沛的中小型公司來說,無疑是一大負擔,因此,各國政府於促進生技醫藥產業發展之同時,相當重視如何減輕這些生技製藥公司的營運壓力,進而協助其順利茁壯。


  現今歐盟境內至少有
1500家中小型生技公司,為減輕這類研發導向的中小型製藥公司之財務負擔,並提供一些藥政管理上的專門協助,歐盟於去20051215通過了〝歐盟醫藥品管理局協助中小型公司發展規則(COMMISSION REGULATION (EC) No 2049/2005 laying down, pursuant to Regulation (EC) No 726/2004 of the European Parliament and of the Council, rules regarding the payment of fees to, and the receipt of administrative assistance from, the European Medicines Agency by micro, small and medium-sized enterprises,以下簡稱本規則)〞。


  本規則主要是希望
EMAEuropean Medicines Agency, 即歐盟醫藥品管理局)能透過相關規費之減免及提供科學諮詢的方式,降低中小型公司新藥上市申請費用(一般而言,人類用新藥於歐盟上市需支付14 萬歐元的申請費用),進而促進技術創新及新藥研發。另為協助中小型公司能更快速及方便地利用到這些優惠,本規則特要求EMA應於其內部建立〝中小企業辦公室(SME Office)〞,並製作詳細之使用者手冊(User Guide)供中小型公司參考。


  台灣大部分的生技製藥公司亦屬中小型,故政府應思考如何幫助這些公司成長茁壯。雖然我國對生技製藥產業相關已提供投資抵減優惠,但卻無特別針對中小型生技製藥公司的藥政管理法規,歐盟前述立法及其精神值得我國借鏡。

相關連結
※ 歐盟對中小型生技公司提供藥政管理之費用優惠及專業協助, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=437&no=0&tp=1 (最後瀏覽日:2026/01/31)
引註此篇文章
你可能還會想看
美國健康保險制度下的個人資料安全保護隱憂

  為降低美國人民在醫療保險費用的支出,同時加強管理現有的保險產業,同時提供美國人民一更易負擔的醫療保險制度,美國總統歐巴馬自上任以來遂特別加強推動美國健康保險制度,與相關現有醫療保險制度的建置與改革,並於2010年3月23日通過「病患保護與平價醫療法案」(The Patient Protection and Affordable Care Act,本法暱稱Obamacare),並計劃於今(2013)年10月正式啟動上路。   為集中且便利相關機構快速讀取單一個人之相關資訊,Obamacare計畫透過聯邦數據服務樞紐(The Federal Data Services Hub)的建置,彙整目前美國各單一政府單位所保有之全民個人資料,該類資料涵蓋個人醫療、教育、和財務等相關資訊,提供各州政府單位機關有需求時得以讀取。然而,儘管該服務樞紐的用意係為提供更完整的個人資料,然而其卻也因其本身具集中單一個人資料於一身的特性而受到各界的質疑。反對人士認為,由於該服務樞紐彙整龐大單一個人資料,因此若其未建立完善資訊安全機制,而遭受到不肖駭客入侵竊取個人資料的話,所造成的後果將影響甚遠,再加上未來將管理服務樞紐的美國衛生及公共服務部(The Department of Health and Human Services, HHS),遲遲未能讓外界信服其已建立充分的資訊安全保全系統來保障全美國人民的個人資料,因此反對人士對於該服務樞紐對於個人資料安全與隱私的保全能力感到堪慮。   根據美國隱私法(Privacy Act of 1974),美國政府需提供適當的隱私保全機制來保障美國人民的個人資料,同時,美國聯邦資訊安全管理法(Federal Information Security Management Act of 2002)亦要求美國政府需確保美國人民的個人資料不被濫用,故在該二法案的明文要求下,歐巴馬政府於推行Obamacare之際,相關資訊安全保全系統機制仍須符合標準始得合法運作。Obamacare上路在即,歐巴馬政府與相關部會該如何解決個人資料保護問題,其後續發展實值得觀察。

歐洲法院2017年12月認定Uber是運輸服務業

  巴塞隆納計程車工會認為Uber未受西班牙運輸服務業相關法令管制,而有違反公平競爭之虞,因此向西班牙巴塞隆納3號商事法院提起訴訟。3號商事法院認為有必要進一步釐清Uber之商業模式究竟是否為歐盟法令下之運輸服務業或資訊服務業,亦或兩者均是。這將影響歐盟內部市場指令和電子商務指令之涵蓋範圍,從而決定Uber是否有違反競爭法。   為此,歐洲法院在2017年5月做出先行裁決後,於同年12月做出判決,認定Uber之性質是運輸服務業,因此排除前述指令之適用,應接受各國運輸服務業相關法令之要求,否則違反公平競爭。法院觀點認為縱然其商業模式看似乘客與駕駛之間為自由選擇之連結。然而,Uber提供的平台是這個連結不可或缺的關鍵以外,對於運輸服務的提供,包括價格、車輛、駕駛的選擇具有決定性的影響力。此外,Uber藉由組織這樣的運輸服務來獲取利潤本身就涉及了運輸服務的直接提供。所以Uber整體服務的主要組成部分必須被視為以運輸服務構成,不應被分類為資訊服務。

日本經濟產業省所屬研究機構提議「日本能源基本計畫修正研析建議」報告

  日本經濟產業省(Minister of Economy, Trade and Industry)所屬「自然資源及能源諮詢委員會(Advisory Committee for Natural Resources and Energy)」於2011年12月提出一份「日本能源基本計畫修正研析建議(Establishment of a New Basic Energy Plan for Japan)」,對於現有日本能源基本計畫,研析討論重要議題,並提出修正建議。   日本能源基本計畫,係因日本政府為因應2020年應達25%減碳目標(相較1990年水準),於2010年所規劃擬訂之推動計畫。而自然資源及能源諮詢委員會則是陸續招開會議研商討論,並提供建議給日本經濟產業作為省調修參考。此份報告指出,此份報告指出,能源基本計畫之推動架構必須重新思考,包括提議能源政策應強調重視「需求端(Demand Side)」,與兼顧「消費者(Consumers)」、「社會公民(Ordinary Citizens)」、「區域社區(Regional Communities)」等方面意見及利益,並建立社會公眾信心(Public’s Trust),以及必須能達到多元化不同電力能源之來源應用,並對於日本國家所需能源組成結構(Desired Energy Mix)進行討論議訂。   並且,對於推動實施,建議能源政策改革應朝向,以改革需求端架構(Reform of the Demand Structure)來達到能源節約社會目標,,以及改革供給端(Reform of the Supply Structure)來達到下一代分散式能源系統目標,並且倡議以創新技術來協助國家能源組成結構轉型,與能源供給端至需求端應備建設(Energy Supply-Demand Structure)之改革工作。   此研究報告於2011年12月提出後,歷經多次修改(最新更新為2012年1月),未來提交給經濟產業省供政策參考後,將產生如何影響內容,將再持續觀察最新進度。

世界經濟論壇發布《人工智慧公平性和包容性藍圖》白皮書

  世界經濟論壇(World Economic Forum, WEF)於2022年6月29日發布《人工智慧公平性和包容性藍圖》白皮書(A Blueprint for Equity and Inclusion in Artificial Intelligence),說明在AI開發生命週期和治理生態系統中,應該如何改善公平性和強化包容性。根據全球未來人類AI理事會(Global Future Council on Artificial Intelligence for Humanity)指出,目前AI生命週期應分為兩個部分,一是管理AI使用,二是設計、開發、部署AI以滿足利益相關者需求。   包容性AI不僅是考量技術發展中之公平性與包容性,而是需整體考量並建立包容的AI生態系統,包括(1)包容性AI基礎設施(例如運算能力、資料儲存、網路),鼓勵更多技術或非技術的人員有能力參與到AI相關工作中;(2)建立AI素養、教育及意識,例如從小開始開啟AI相關課程,讓孩子從小即可以從父母的工作、家庭、學校,甚至玩具中學習AI系統對資料和隱私的影響並進行思考,盡可能讓使其互動的人都了解AI之基礎知識,並能夠認識其可能帶來的風險與機會;(3)公平的工作環境,未來各行各業需要越來越多多元化人才,企業需拓寬與AI相關之職位,例如讓非傳統背景人員接受交叉培訓、公私協力建立夥伴關係、提高員工職場歸屬感。   在設計包容性方面,必須考慮不同利益相關者之需求,並從設計者、開發者、監督機關等不同角度觀察。本報告將包容性AI開發及治理整個生命週期分為6個不同階段,期望在生命週期中的每個階段皆考量公平性與包容性: 1.了解問題並確定AI解決方案:釐清為何需要部署AI,並設定希望改善的目標變量(target variable),並透過制定包容性社會參與框架或行為準則,盡可能實現包容性社會參與(特別是代表性不足或受保護的族群)。 2.包容性模型設計:設計時需考慮社會和受影響的利益相關者,並多方考量各種設計決策及運用在不同情況時之公平性、健全性、全面性、可解釋性、準確性及透明度等。 3.包容性資料蒐集:透過設計健全的治理及隱私,確定更具包容性的資料蒐集路徑,以確保所建立之模型能適用到整體社會。 4.公平和包容的模型開發及測試:除多元化開發團隊及資料代表性,組織也應引進不同利益相關者進行迭代開發與測試,並招募測試組進行測試與部署,以確保測試人群能夠代表整體人類。且模型可能隨著時間發展而有變化,需以多元化指標評估與調整。 5.公平地部署受信任的AI系統,並監控社會影響:部署AI系統後仍應持續監控,並持續評估可能出現新的利益相關者或使用者,以降低因環境變化而可能產生的危害。 6.不斷循環發展的生命週期:不應以傳統重複循環過程看待AI生命週期,而是以流動、展開及演變的態度,隨時評估及調整,以因應新的挑戰及需求,透過定期紀錄及審查,隨時重塑包容性AI生態系統。   綜上,本報告以包容性AI生態系統及生命週期概念,期望透過基礎設施、教育與培訓、公平的工作環境等,以因應未來無所不在的AI社會與生活,建立公司、政府、教育機構可以遵循的方向。

TOP