南韓司法單位擬懲處黃禹錫等四人

  去(2005)年11月,全球幹細胞研究先驅-韓國首爾大學黃禹錫(Hwang Woo-suk)教授承認其研究有國際醫學倫理瑕疵,引發軒然大波。其後,相關的醜聞頻傳,教授更被控研究造假,使得原本以前瞻之胚胎幹細胞研究技術(即體細胞核轉置技術”somatic cell nuclear transfer”)獨步全球的韓國科學界,研究信譽遭受嚴重打擊。


  偵辦「黃禹錫科研論文造假醜聞案」的南韓檢察當局,經連日傳訊相關人員後,正考慮對黃禹錫等四人採取司法懲處。
對於被查出不法獲得並使用科研用卵子的黃禹錫,檢方考慮依據違反「生命倫理及安全之法律」等條文予以懲處。


  據指出,檢方在調查中,掌握了
2004年及2005年刊登在「科學」雜誌上的科研論文,黃禹錫等人捏造體細胞複製幹細胞,和為病患複製培育胚胎幹細胞的科研數據,矇騙了整個科學界。調查顯示,黃禹錫去年十一月檢驗幹細胞的遺傳基因(DNA)指紋之前,似乎真的不曉得根本就不存在為病患量身打造複製培育胚胎幹細胞的事實。但檢方卻證實黃禹錫確實指示屬下研究員,將部分照片等科研數據和資料,自我膨脹等造假的事實。


  由於生醫研究給許多病患帶來新的治療希望,因此其通常會以實際行動(即自願捐贈研究用檢體、協助經費募集等)表達支持。惟研究瑕疵或造假則會讓病患及一般民眾認為遭受欺騙,進而影響其未來捐贈檢體或以受試者身份參與生醫研究之意願。可見生醫倫理並不僅是道德呼籲,也是生醫研究能否順利進行、生醫研究能否生根發芽的重要基石。

 

黃禹錫案之相關報導可參見 The Economists, December 3 rd 2005, p. 71; The Economist, December 24 th 2005, p. 109-110

相關連結
※ 南韓司法單位擬懲處黃禹錫等四人, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=439&no=67&tp=1 (最後瀏覽日:2026/02/19)
引註此篇文章
你可能還會想看
既有建築改善翻新措施─德國政策參考

既有建築改善翻新措施─德國政策參考 科技法律研究所 2013年07月11日 壹、事件摘要   內政部於6月20日公布資訊指出,我國為達成環境永續發展之目標,於1999年開始推行綠建築標章評估系統,迄今已有3,943件新建或既有建築,取得綠建築標章或候選綠建築證書,每年皆可有效節水與節電;同時,自2003年起,針對既有中央辦公廳舍及國立大專院校所辦理的改善翻新,亦具有顯著的節能減碳成果。 貳、重點說明   為因應全球暖化與氣候變遷問題,我國針對建築部門推動許多兼顧節能減碳與生態保護的綠建築政策。首先,內政部在1999年針對新建建築之規劃設計,訂定綠建築標章評估系統。行政院另於2001年3月核定「綠建築推動方案」,率先實施對公部門新建及既有建築之綠化工作,內政部並依據該方案實施方針第7條,推動「綠廳舍暨學校改善補助計畫」。接著,為了強化民間產業投入綠建築,行政院再於2008年1月核定「生態城市綠建築推動方案」,依據該方案實施方針第11條「辦理綠建築更新診斷與改造計畫」,繼續推動既有中央辦公廳舍及國立大專院校建築物之改善翻新。此外,為鼓勵民間既有建築參與綠建築改善,並於100年1月訂定內政部獎勵民間綠建築示範作業要點。   由上述政策發展可以看出,我國既有建築之改善翻新,乃循公部門先帶頭示範,再輔以對民間建築給予獎勵補助,與歐美等先進國家政策推動模式一致。 參、事件評析   根據統計,我國既有建築約佔全國建築總量97%,這些早期建造的建築物,於設計規劃之初皆未納入綠建築之概念。因此,雖然許多既有建築仍舊堪用,但建築本身卻普遍存在著高耗能問題。這使得推動既有建築進行改善翻新,提升其能源效率,成為一重要議題。而依內政部公布之資訊,公部門既有建築改善翻新獲得卓越之成效,確實令人欣喜。然而,公部門既有建築畢竟仍屬少數,故如何推動民間既有建築進行改善翻新,會是我國落實綠建築政策的關鍵。在此,本文將介紹德國政府之相關政策,希望能供我國作參考。   在既有建築改善翻新政策中,德國政府同樣先要求公部門建築必須進行改善翻新,以逐年降低其能源消耗量。與此同時,德國政府也認知到有超過75%的既有建築,至今仍未進行改善翻新。因此德國交通、建築暨都市發展部(Bundesministerium für Verkehr, Bau und Stadtentwicklung, BMVBS,簡稱交通部)推出了降低二氧化碳排放的建築改善翻新方案,不僅給予補助,更與德國復興信貸銀行(Kreditanstalt für Wiederaufbau, KfW)合作,提供改善翻新的低利率貸款。   今年6月1日,為了促進民眾積極採取「具體的」改善翻新行動,交通部與德國聯邦經濟暨技術部(Bundesministerium für Wirtschaft und Technologie, BMWi,簡稱經濟部)共同推出建築節能改善翻新的線上評估服務。讓民眾即使在家中,也可以進行節能與節省成本的行動。 該線上評估服務分為三大步驟,首先,必須輸入建築物的狀態。接著,便可以選擇欲改善翻新的項目及措施。最後,系統會產生整體改善翻新的結果,包括改善翻新前後的能源需求狀態、二氧化碳排放量,以及改善翻新所需經費,並提供聯邦、邦政府財政補助及KfW貸款方案的連結。   德國政府希望藉此向民眾傳達改善翻新的好處,在於節能、節省長期的能源成本,並增加建築物之價值。儘管德國政府在此線上評估服務網站上表明,評估結果僅供參考,並無法取代專業能源顧問的具體評估建議。然而,事先透過簡單、便利的線上評估,不僅增加民眾對於既有建築改善翻新的瞭解及興趣,更是進一步驅動民眾尋求專業評估的動力。   由此可知,節能減碳若要具體落實,全面性的規劃絕對是必要的。我國若能以德國的政策為借鏡,給予民眾更多關於既有建築改善翻新的協助,提供更多資訊。相信可以鼓勵更多民眾自主投入既有建築節能之行列,使我國綠建築政策獲得全面性的落實。

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

中國大陸最高人民法院於2014年11月3日公布《最高人民法院關於北京、上海、廣州知識產權法院案件管轄的規定》

  根據中國大陸最高人民法院(以下簡稱高法)2014年11月3日公布之《最高人民法院關於北京、上海、廣州知識產權法院案件管轄的規定》,大陸地區將陸續於北京、上海、廣州成立知識產權法院(即我國的智慧財產法院)。另據高法6日新聞報導,北京知識產權法院已於同月6日掛牌成立,至於上海、廣州兩地法院也將於年內正式成立。   大陸地區成立知識產權法院係本年8月31日由其第12屆全國人民代表大會常務委員會第10次會議所決定的,初步將於北京、上海、廣州三地成立專責法院。根據前開規定第1條,知識產權法院管轄的第一審案件包括三類:一、專利、植物新品種、集成電路布圖設計(即我國之積體電路布局)、技術秘密、計算機軟件等技術類民事和行政案件;二、對國務院部門或者縣級以上地方人民政府涉及著作權、商標、不正當競爭等行政行為提起訴訟的行政案件;三、涉及馳名商標認定的民事案件。   北京、上海、廣州知識產權法院的管轄範圍分別為北京、上海兩直轄市,以及廣東省,前述提及三類相關案件由三地知識產權法院專屬管轄。如有上訴,相關案件均由法院所在地的高級人民法院知識產權審判庭審理,而不再透過該地中級人民法院。且相關法院之法官除依專業進行分類、配置外,亦將設有技術調查官等,以強化專業審判的能力。   隨著科技的日新月異,以及智慧財產相關糾紛或訴訟案件的高度專業化,有關大陸地區成立知識產權法院,或許是為因應趨勢所不得不為之措施,然其具體運作及成效,後續仍值持續關切。

NIH公布最新GWAS基因型與表現型數據資料庫分享近用方針

  經過了一整年向各界諮詢與彙整各方意見後,美國國家衛生研究院(NIH)於今年8月底,公布其所資助之GWAS基因型與表現型數據資料庫(genotype-phenotype datasets)之分享近用方針。此方針希望在保障研究參與者的個人隱私前提下,協助科學研究社群取得相關基因數據資料。GWAS數據資料對科學有顯著的幫助,並具有龐大的潛在公共利益,然而,提供個人的基因型與表現型資料進行科學研究,涉及個人隱私與秘密之保護,故具有高度的敏感性而受到大眾關切。   因此,NIH在訂定這項方針時,為了搜集各方意見,首先於去年5月,宣布計畫更新GWAS的數據資料分享政策,後於去年8月公開徵詢大眾對方針之意見,次又依據所蒐集之各方意見,於去年12月針對此分享政策舉辦會議進行討論,根據這些討論所形成之共識,併同NIH內部討論之結果,最後形成此項分享政策。   方針中指出,如何在促進科學研究之目的,與保護相關參與人的權利間取得平衡,是相當重要的議題,故本方針分別對研究人員近用之程序、基因數據資料的處理與參與者權利之保護進行詳細規範。舉例來說,本方針要求欲近用資料庫的研究人員,提供其研究必須使用此資料庫的書面說明資料;另外也會對所有存放在資料庫的數據資料進行去個人化處理,使該項資訊無法再以技術判別,並使用隨機方法加密,以確保參與者的隱私與保密資料不遭外洩。根據NIH表示,此方針雖然僅是對GWAS數據資料庫的近用作規範,但未來亦有意將其作為近用其他類似資料庫的規範參考架構。

TOP