澳洲隱私保護辦公室(Office of the Australian Information Commissioner, OAIC)專員今年(2016)4月發表聲明認為,在符合特定條件之情形下,亦即,去識別化過程符合OAIC認定之最高標準時,去識別化後之資料不適用「1988隱私法案」(Privacy Act);澳洲企業組織目前所進行之個人資料去識別化,是否已符合「1988隱私法案」之規範要求,OAIC仍持續關注。OAIC近期準備提出去識別化認定標準之指引草案。 澳洲「1988隱私法案」揭示了「澳洲隱私原則」(Australian Privacy Principles, APPs),就非公務機關蒐集、利用、揭露與保存設有規定,APPs第6條更明文限制非公務機關揭露個人資料,於特定情況下,APPs允許個人資料經去識別化後揭露。例如,APPs第11.2條規定,若非公務機關當初之蒐集、利用目的已消失,須以合理方式將個人資料進行銷毀或去識別化。 如非公務機關係合法保有個人資料,即無銷毀或去識別化義務;此外,若所保有個人資料屬健康資料者,因係澳洲政府機關以契約方式委託非公務機關,非公務機關亦無銷毀或去識別化義務。應注意者,APPs原則上禁止非公務機關基於學術研究、公共衛生或安全之目的,主動蒐集個人健康資料 (APPs第16B(2)條),同時亦禁止基於學術研究、公共衛生或安全目的,就保有之個人資料進行去識別化 (APPs第16B(2)(b)條)。如非基於前述目的,且符合APPs第16B(2)條之要件者,非公務機關始得基於研究、公共衛生或安全目的蒐集個人健康資料 (APPs第95A條)。 其他如「稅號指引」(Tax File Number Guidelines)、隱私專員所提「2014隱私(財務信用有關研究)規則」(Privacy Commissioner’s Privacy (Credit Related Research) Rule 2014) 等,均就個人資料去識別化訂有相關規範。 未來以資料為導向之經濟發展,將需堅實的隱私保護作為發展基礎,澳洲去識別化個人資料認定標準之提出,以及標準之認定門檻,殊值持續關注。
美國推動創新研究獎勵方案,鼓勵中小企業投入潔淨能源研發美國能源部今(2012)年5月宣布1千1百萬美元的預算,獎勵小型企業發展潔淨能源創新研究與科技。美國的小型企業並非以營運的領域來區分,而且必須合於美國聯邦法規(13 CFR 121)中對於小型企業的規範,另外,美國小型企業管理局(U.S. Small Business Administration,SBA)對於各種營利活動亦建立有大小區分的標準,依照不同的行業別,就員工人數或營業額的數目訂立區分標準。因為企業大小的區分,在美國政府採購契約發包的程序上極為重要,因為他們確保,為大小不等的小企業之間提供公平的競爭基準,而這些區分標準同時也適用在SBA的貸款/補助計畫以及能源部小型企業創新研究計畫(Small Business Innovation Research ,SBIR)與小型企業技術移轉計畫(Small Business Technology Transfer ,STTR)上。 能源部此次小型企業創新研究計畫是歐巴馬政府為扶持小型企業,增加美國就業機會政策的一部分,計畫內容在於,給予每個小型企業最高15萬美元的補助金,只要企業的業務致力於發展創新能源技術,製造新的工作機會,以提高美國在世界的經濟競爭力,這些獲選企業在未來兩年內,可以參加第二階段的競賽,並將有機會獲得高達2百萬美元的獎勵金,目前已有67個小型企業,總共75項創新研究計畫,包括風力渦輪機、燃料電池技術以及煤炭能源等的相關研究工作,這些獲選的小型企業遍佈全美各州。 美國政府認為,小型企業為其經濟體的主幹,提供全美二分之一的工作機會,並且在國內持續製造三分之二的新就業機會,重要的是,這些企業正在幫助美國減輕對進口石油的依賴,保護美國的環境,降低環境污染。而為了支持這些小型企業在國內經濟體所扮演的重要角色, 在能源部主責進行的SBIR計劃和STTR計劃中,持續支持科學卓越和技術創新,以達強化國家經濟的目標。
因應使用「生成式AI(Generative AI)」工具的營業秘密管理強化建議2024年7月1日,美國實務界律師撰文針對使用生成式AI(Generative AI)工具可能導致的營業秘密外洩風險提出營業秘密保護管理的強化建議,其表示有研究指出約56%的工作者已經嘗試將生成式AI工具用於工作中,而員工輸入該工具的資訊中約有11%可能包含公司具有競爭力的敏感性資訊或客戶的敏感資訊,以Chat GPT為例,原始碼(Source Code)可能是第二多被提供給Chat GPT的機密資訊類型。系爭機密資訊可能被生成式AI工具提供者(AI Provider)用於訓練生成式AI模型等,進而導致洩漏;或生成式AI工具提供者可能會監控和存取公司輸入之資訊以檢查是否有不當使用,此時營業秘密可能在人工審查階段洩漏。 該篇文章提到,以法律要件而論,生成式AI有產生營業秘密之可能,因為營業秘密與著作權和專利不同之處在於「發明者不必是人類」;因此,由生成式 AI 工具協助產出的內容可能被視為營業秘密,其範圍可能包括:公司的內部 AI 平台、基礎的訓練算法和模型、輸入參數和輸出結果等。惟基於目前實務上尚未有相關案例,故生成式AI輸出結果在法律上受保護的範圍與條件仍需待後續的判例來加以明確。 實務專家提出,即使訴訟上尚未明確,企業仍可透過事前的管理措施來保護或避免營業秘密洩露,以下綜整成「人員」與「技術」兩個面向分述之: 一、人員面: 1.員工(教育訓練、合約) 在員工管理上,建議透過教育訓練使員工了解到營業秘密之定義及保護措施,並告知向生成式AI工具提供敏感資訊的風險與潛在後果;培訓後,亦可進一步限制能夠使用AI工具的員工範圍,如只有經過培訓及授權之員工才能夠存取這些AI工具。 在合約方面,建議公司可與員工簽訂或更新保密契約,納入使用生成式AI的指導方針,例如:明確規定禁止向生成式AI工具輸入公司營業秘密、客戶數據、財務信息、未公開的產品計劃等機密資訊;亦可增加相關限制或聲明條款,如「在生成式AI工具中揭露之資訊只屬於公司」、「限制公司資訊僅能存儲於公司的私有雲上」等條款。 2.生成式AI工具提供者(合約) 針對外部管理時,公司亦可透過「終端使用者授權合約(End User License Agreement,簡稱EULA)」來限制生成式AI工具提供者對於公司在該工具上「輸入內容」之使用,如輸入內容不可以被用於訓練基礎模型,或者該訓練之模型只能用在資訊提供的公司。 二、技術方面: 建議公司購買或開發自有的生成式AI工具,並將一切使用行為限縮在公司的私有雲或私有伺服器中;或透過加密、防火牆或多種編碼指令(Programmed)來避免揭露特定類型的資訊或限制上傳文件的大小或類型,防止機密資訊被誤輸入,其舉出三星公司(Samsung)公司為例,三星已限制使用Chat GPT的用戶的上傳容量為1024位元組(Bytes),以防止輸入大型文件。 綜上所述,實務界對於使用生成式AI工具可能的營業秘密風險,相對於尚未可知的訴訟攻防,律師更推薦企業透過訴訟前積極的管理來避免風險。本文建議企業可將前述建議之作法融入資策會科法所創意智財中心於2023年發布「營業秘密保護管理規範」中,換言之,企業可透過「營業秘密保護管理規範」十個單元(包括從最高管理階層角色開始的整體規劃建議、營業秘密範圍確定、營業秘密使用行為管理、員工管理、網路與環境設備管理、外部活動管理,甚至是後端的爭議處理機制,如何監督與改善等)的PDCA管理循環建立基礎的營業秘密管理,更可以透過上述建議的做法(對單元5.使用管理、單元6.1保密約定、單元6.4教育訓練、單元7.網路與環境設備管理等單元)加強針對生成式AI工具之管理。 本文同步刊登於TIPS網站(https://www.tips.org.tw)