繼美國最高法院於Microsoft Corp. v. AT&T Corp. 做出與專利法治外法權有關的判決後,美國聯邦巡迴上訴法院於2009年8月19日再次做出限縮解釋專利法第271條(f)項於美國境外的效力。 美國專利法第271條(f)項規定未經許可提供或使人提供專利產品之元件,將之由美國供應(“supply”)至美國境外完成組合,亦視為侵害該專利產品之專利權。此項規定為美國國會為防範企業藉由在美國境內製造非專利保護之零組件後再運送之海外進行組合以規避專利侵權責任而制定。之後,在實物案例中,關於第271條(f)項之解釋與適用範圍產生諸多爭議。美國最高法院於其在2007年Microsoft Corp. v. AT&T Corp. 中強調不應擴張解釋第271條(f)項之文字。 於Cardiac Pacemakers Inv. V. St. Jude Medical Inc. 一案中,原告Cardiac Pacemakers控告被告St. Jude Medical所販賣的植入式心臟整流去顫器 (implantable cardioverter defibrillator)之使用會侵犯原告所擁有的一個利用植入式心臟刺激器治療心律不整的方法專利 (a method of heart stimulation using an implantable heart stimulator)。本案的爭點在於被告銷售可實施原告美國專利方法的產品或裝置讓該專利方法於美國境外被實施的行為是否構成第271條(f)項之侵害。美國聯邦巡迴上訴法院推翻其於2005年之判決(Union Carbide Chemicals Plastics Technology Corp. V. Shell Oil Co.),判定專利法第271條(f)項不適用於方法專利。亦即,被告銷售可實施原告美國專利方法的產品至海外的行為不構成第271條(f)項所規定之侵權行為。 此判決對原告Cardiac Pacemakers之衝擊可能較小,因其專利範圍除方法請求項外,亦包含物品請求項,原告還可藉由其物品請求項獲得侵權損害賠償。但此案可能對僅能以方法申請專利的產業如生技藥業(某些診斷及檢驗僅能以方法申請專利)及軟體業造成較大的影響。
實現綠色工業 政府推動PC業G計畫將於 2006年中實行之歐洲環保指令,規定輸入歐盟的電子產品材料、及其後續回收等作業流程,皆須符合廢電子電機設備(Waste Electronics and Electrical Equipment,WEEE)以及有毒物質禁制令(Restriction of Hazardous Substances,ROHS)兩大法規。為此,經濟部於27日宣布啟動「寰淨計畫(G計畫)」,將結合系統廠商、檢測驗證機構、資訊服務業者等單位,以系統廠商帶動下游供應商的方式,加速國內電腦廠商推出符合環保規範的產品,目前所知包括華碩、神達、大眾等電腦廠商,都已經投入了此計畫。 本次所涉廢電子電機設備 (WEEE) 法規,是關於廢棄電子、電機產品的回收再利用,規定自2005年8月13日後所生產的產品需由生產者進行回收,範圍含括家用設備、資訊通訊設備、玩具休閒與運動設備、醫療裝置等產品。 另一則是有毒物質禁制令 (ROHS),其明列自2006年7月後,製程、設備及材料處理研發禁止使用6種有毒物質,如鉛、汞、鎘等,內含六項管制物質的產品將不可在市面流通,屆時輸歐的電子、電機產品皆必須符合該標準。 另針對回收問題,經濟部表示將輔導國內廠商建立綠色產品回收體系及回收管理平台之示範系統,並在日後將 G計畫推廣對象擴及產險公司,以協助業者因應違反歐盟規範所生之求償索賠,並建立風險控管機制。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
何謂日本「促進整合產官學共同研究的大學概況調查書」?「促進整合產官學共同研究的大學概況調查書(産学官共同研究におけるマッチング促進のための大学ファクトブック)」為日本經濟產業省與文部科學省所共同設置的「促進創新產官學對話會議」議定後向外提出,期待藉此使企業更容易理解大學的產官學合作現狀,進一步實現正式的產官學連攜活動。 該概況調查書的先行版中收集整理了各大學整合產官學連攜的實績等資訊,2018年發布的正式版則統整日本327所大學的情報,擴充並更新了該概況調查書的內容,包含:1.產學連攜相關的聯絡窗口資訊等;2.產官學連攜活動的配套方針與往後期待重點化的事項;3.產學連攜之本部機能的相關情報;4.面向正式共同研究的配套措施,如平均交涉期間、跨領域型共同研究;5.各大學之專精領域及其實例;6.資金、資產及智慧財產相關連的持有使用狀況;7.大學發起的創投事業數及其支援體制;8.混合僱用制度的狀況。