澳洲雪梨聯邦法院於本月 24 日對分散式 P2P 業者 Kazaa 發出命令,要求 Kazaa 營運商 Sharman Networks 必須在 10 日內( 12 月 5 日之前),在其提供下載的軟體中加入關鍵字過濾技術( keyword filter system ),否則應立即停止營運。市場人士普遍認為 Kazaa 暫時停止營運的可能性相當地高。 源起於去年底澳洲當地唱片業者控告 Kazaa 一案,今年 9 月 5 日澳洲聯邦法院認定 Kazaa 營運商 Sharman Networks 構成著作權侵害,除判決唱片業者勝訴外,法院並判定 Kazaa 必須在 2 個月內修改其軟體程式,加入相關過濾技術,以避免使用者傳輸違法音樂檔案;另一方面,判決賦予唱片業界得提交 3000 個關鍵字名單 ( 包括了曲目及歌手姓名 ) 要求 Kazaa 加以過濾的權利,該名單並得每兩週加以更新。 直至本月 24 日, Kazaa 仍表示其無法控制高達 100 萬使用者的個人行為,拒絕修改其提供下載的 P2P 軟體,導致聯邦法院不得不下達最後通牒。 Kazaa 營運商 Sharman Networks 雖已提起上訴,但在現時關鍵字過濾技術實施不易之下,澳洲 Kazaa 恐將步上已於本月 7 日關閉的 Grokster 後塵。
歐盟執委會提出《用電資料相互操作性要求及程序實施規則草案》促進電力服務相互操作性歐盟執委會(European Commission)於2022年7月29日提出《近用電錶及用電資料之相互操作性要求及非歧視性與透明性程序實施規則草案》(Commission Implementing Regulation (EU) on interoperability requirements and non-discriminatory and transparent procedures for access to metering and consumption data),於2022年9月5日草案第二階段之公眾意見徵集結束。本草案以進一步落實《內部電力市場指令》(Directive (EU) 2019/944)中賦予用戶近用有關用電及包括行政手續費用、使用輸配電過路費等資料,促進智慧電錶系統(smart metering system)於資料模型階段及應用層面之相互操作性(interoperability),提高市場參與者資料近用與交換之標準,以及未來創新能源服務標準等目標。 為落實上述指令之要求,本草案旨在規定系統相互操作性以及資料近用的非歧視性與透明性要求,其重點如下: (1)本草案適用對象為經認證之歷史計量及用電資料、未經認證的近即時計量(non-validated near-real time metering)、用電資料形式的計量以及用電資料。 (2)確保供應商於用戶同意下能夠以透明且連續性的方式近用用戶資料(包括判讀及使用)。用戶亦得近用其於智慧電錶系統的資料。 (3)根據會員國的實踐,定義歐盟層級在商業模式層面、功能層面及資訊層面等一般性規則與程序規定的「參考模型」(reference model)。參考模型為特定服務及程序所需的基本工作程序,包括: A. 由各種角色、職責及其相互作用組成的「角色模型」,包括計量資料管理員(metered data administrator)、計量站管理員(metering point administrator)、資料近用提供者及權限管理員的角色和職責; B. 由資訊對象、屬性以及該對象間關係組成的「資訊模型」; C. 詳細說明程序步驟的「程序模型」。 (4)為有效確保資料近用程序的透明度,有必要收集會員國提供的國家實踐報告,並報告至歐盟層級,同時協助會員國報告其國家實踐。 (5)適用本草案之個人資料需遵守《歐盟一般資料保護規則》(GDPR);由於智慧電錶符合終端設備的要求,也適用《電子通訊個人資料處理暨隱私權保護指令》(Directive 2002/58/EC)。
美國FTC修正廣告使用推薦與見證指南美國聯邦交易委員會(Federal Trade Commission,FTC)於2009年10月5日公佈了新修正的「廣告使用推薦與見證指南(Guides Concerning the Use of Endorsements and Testimonials in Advertising)」,這是該指南自1980年制定以來第一次的更新,並於今年12月1日起生效。此次修訂特別針對商品服務使用心得做出規範,規範亦適用於社交媒體(如Facebook、Twitter及各種類型的部落格等具互動性的媒體)中之心得分享,未來在社交媒體對商品或服務所做出的各種評論,都有可能成為FTC管制的對象。 在社交媒體中所傳遞之商品心得訊息,特別是名人(在該領域分享心得出名者)所分享之訊息,對於網路使用者或消費者之影響力甚大,甚至會改變其是否選擇消費該商品或服務之意願,但其真實性卻未必有相當之保障。有鑑於此,FTC於新修正之指南中即對於心得分享之訊息作出相應規範,重點如下: 1.心得分享者若由商品或服務提供者處受有金錢或相當程度的利益給付,即非單純之心得分享,而有與廣告相同之性質。因此若有虛偽不實陳述的狀況,亦視為是不實廣告。 2.心得分享者必須揭露其與商品或服務提供者的利益關係,使其他消費者明瞭。 3.廣告中若有引用研究結果,而該研究機構為該公司所贊助時,廣告中必須揭露兩者的利益關係。 4.指南同時適用於談話性節目以及社交媒體上所為之心得分享。 而違反上述規定者,可能會依美國聯邦交易委員會法第5條(FTC Act Sec.5)之相關規定每次最高得處以1萬1千美元罰鍰。 此規定之公布引起了部落客(部落格使用者)之質疑,因此FTC廣告實務科(The Division of advertising Practices)之副科長Richard Cleland特別對此做出澄清,其指出:「FTC不會立刻處以罰鍰,也並非所有個案均嚴重至須處以罰鍰。較有可能的作法是,先以警告函警告違規的部落客。且FTC無權對違反FTC法案的行為直接處以罰鍰,若事態嚴重,則FTC會將案件移送地方法院,由法院做出各種處斷,最重可至罰鍰。」 此一指南的約束,固然提供了消費者分辨廣告與心得分享的方式,但是關於更細部的操作,例如何時可認為部落客與商品及服務業者有利益關係,仍有待實務的累積。
美國平等就業機會委員會發布「評估就業篩選程序中使用軟體、演算法及AI之不利影響」技術輔助文件美國平等就業機會委員會(Equal Employment Opportunity Commission, EEOC)於2023年5月18日發布「根據 1964 年《民權法》第七章評估就業篩選程序中使用軟體、演算法和AI之不利影響」(Assessing Adverse Impact in Software, Algorithms, and Artificial Intelligence Used in Employment Selection Procedures Under Title VII of the Civil Rights Act of 1964)之技術輔助文件(下簡稱「技術輔助文件」),以防止雇主使用自動化系統(automated systems)對求職者及員工做出歧視決定。 該技術輔助文件為EEOC於2021年推動「AI與演算法公平倡議」(Artificial Intelligence and Algorithmic Fairness Initiative)計畫的成果之一,旨在確保招募或其他就業決策軟體符合民權法要求,並根據EEOC 1978年公布之「受僱人篩選程序統一指引」(Uniform Guidelines on Employee Selection Procedures, UGESP),說明雇主將自動化系統納入就業決策所應注意事項。 當雇主對求職者與員工做出是否僱用、晉升、終止僱傭,或採取類似行動之決定,是透過演算法決策工具(algorithmic decision-making tool),對特定種族、膚色、宗教、性別、國籍或特定特徵組合(如亞洲女性),做出篩選並產生不利影響時,除非雇主能證明該決策與職位工作內容有關並符合業務需求,且無其他替代方案,否則此決策將違反《民權法》第七章規定。 針對如何評估不利影響,雇主得依UGESP「五分之四法則」(four-fifths rule),初步判斷演算法決策工具是否對某些族群產生顯著較低的篩選率。惟EEOC提醒五分之四法則推導出之篩選率差異較高時,仍有可能導致不利影響,雇主應依個案考量,使用實務常見的「統計顯著性」(statistical significance)等方法進一步判斷。 其次,當演算法決策工具係由外部供應商所開發,或由雇主授權管理人管理時,雇主不得以信賴供應商或管理人陳述為由規避《民權法》第七章,其仍應為供應商開發與管理人管理演算法決策工具所產生之歧視結果負責。 最後,EEOC鼓勵雇主應對演算法決策工具進行持續性自我評估,若發現該工具將產生不利影響,雇主得採取措施以減少不利影響或選擇不同工具,以避免違反《民權法》第七章。