企業蓋廠房 可造林減抵二氧化碳排放量

  企業界興建廠房未來若排放的二氧化碳過高,可以透過在國內外協助造林等方式來改善。


  農委會日前組成農業森林議題工作小組,積極蒐集國內外相關資料,推廣植樹造林對溫室氣體減量策略及作法,並調查出更精確的碳吸存數據,作為未來碳交易等機制所需的基本資料。其初步估算出每種植一公頃森林可淨吸收七公噸二氧化碳的減量模式。未來將可配合碳交易機制,銷售給需進行二氧化碳減量的業者,農委會已先選定台糖進行合作,未來將推廣至業者的平地造林。


  農委會表示,目前的碳交易模式分為兩種,一種是進行國內外的造林,來換取本國二氧化碳的排放量,像是美、日等國,即在中國大陸廣泛種植樹木來換取更多的業者投資,或是在本國境內種植更多的林木,這種交易屬於碳交易。第二種是在本國境內進行溫室氣體的減量,再將減量超過的部分賣給其他國家,亦即清潔費的交易,也屬於廣義的碳交易行為。


  為推動我國建立碳交易機制,農委會也已著手進行造林的碳吸存研究,農委會表示,未來碳交易機制建立後,業者興建廠房若排放的二氧化碳超過標準,可以透過協助國內外造林,或付出造林費用給協助造林的單位。在建立交易模式後,未來若企業界興建一座廠房所造成的二氧化碳排放量超過七公噸,即可透過支付一公頃造林費用的方式,達到平衡的效果。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 企業蓋廠房 可造林減抵二氧化碳排放量, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=457&no=67&tp=1 (最後瀏覽日:2026/02/08)
引註此篇文章
你可能還會想看
微軟與Linspire將展開技術合作

  微軟(Microsoft)宣佈又與Linux銷售商簽署,本次合作對象為Linspire公司,而該公司先前曾受到微軟的商標侵權指控。   這兩家公司曾於2004年達成合解,Linspire答應停止使用Lindows一名稱,而微軟為此支付了2千萬美元。Linspire還獲准使用Windows Media的程式碼,並解決了微軟的商標侵權指控問題。   根據達成之協議,兩方將在包括即時通訊(Instant Messaging)和網路搜尋(Web Search)在內的多個領域展開密切合作。對於購買Linspire付費版的用戶將得到相同的法律保障,以規避任何微軟可能對其採取針對Linux桌面軟體的法律行動。但Linspire未計畫在其免費的Freespire產品中提供微軟的技術,以及任何專利保障。   先前微軟曾表示,在Linux系統上的保護行動已成為其最近一系列“交互授權”合約的一部分,如其與LG、三星(Samsung)和Fuji Xerox簽署的一些專利權交易協定。微軟智權總監David Kaefer表示:「這些協議表明,微軟和眾多Linux供應商正為雙方作業系統間能架起一座橋樑而努力不懈」。這些公司並未在協議裏提及商業利益問題,但Kaefer表示:「很顯然,雙方同時都希望在此協商中獲利」。   協議中,Linspire將把微軟的Live Search作為其Linspire產品的預設搜尋引擎,並將獲准繼續使用包括Windows Media 10程式碼在內的Windows Media技術。   微軟還將准許Linspire在其即時通訊工具中使用其部分字體和IP語音技術,而Linspire也將加入Office 2007的XML檔案格式及OpenDocument格式轉換的研發團隊。

金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。

英國民眾請願禁止使用DRM

  超過1400位英國民眾共同連署後,於英國政府電子請願網站上,請求英國政府禁止「數位版權管理」(digital rights management, DRM)之使用。該項請願中引用去年英國國會獨立組織-All Party Parliamentary Internet Group(APIG)所發表之調查結果。該項調查結果中指出,為避免如2005年Sony所使用之數位版權管理程式般具有侵入性的科技侵害人民權利,應針對此類科技建立消費者保護機制。   除此之外,該份請願亦主張,數位版權管理使得消費者無法自由在CD或數位下載等不同競爭產品間自由選擇。而在不久之前,蘋果電腦之執行長Steve Jobs亦曾提倡無數位版權管理之合法數位音樂下載,Steve Jobs認為若能提供無數位版權管理之合法數位音樂下載,將可增加不同業者所提供音樂下載服務的相容性,進而促使數位音樂下載市場更為蓬勃發展。   不過對於該項請願,英國政府回應中認為數位版權管理不僅透過科技保護措施扮演著警察的角色,同時亦使得內容提供業者得以各種消費者期望的方式提供數位內容服務。因此,數位版權管理的存在仍有其貢獻,不應加以廢除。當然在使用數位版權管理的同時,亦應注意消費者權益之保護,合理的方式乃是在消費者購買產品前,清楚告知產品所提供之服務內容、消費者購買後可被允許之使用方式和各種使用限制。

歐盟第29條工作小組發布「自動化個人決策和分析指引」處理個人資料自動化決策與資料剖析風險問題

  歐盟第29條工作小組於2017年10月3日為因應歐盟一般資料保護規則(GDPR)第22條規定發布「自動化個人決策和分析指引」(Guidelines on Automated individual decision-making and Profiling for the purposes of Regulation 2016/679,2018年2月6日進一步修正,下稱指引),處理對個人資料自動化決策(automated decision-making)和個人檔案剖析(Profiling)的建立。   指引分為五個部分與最佳實踐建議,旨在幫助資料控制者(controller)合乎GDPR對個人資料自動化決策和分析的要求,內容包括下幾點:1.定義自動化決策和分析,以及GDPR對這些概念的處理方法;2.對GDPR第22條中關於自動化決策的具體規定;3.對自動決策和分析的一般規定;4.兒童和個人檔案剖析(Profiling)的建立;5.資料保護影響評估。   指引的主要內容包括:   個人檔案剖析(Profiling),意謂收集關於個人(或一群個人)的資料,並分析他們的特徵或行為模式,加以分類或分群,放入特定的類別或組中,和/或進行預測或評估(例如,他們執行任務的能力,興趣或可能的行為)。   禁止對個人資料完全自動化決策,包括有法律上法或相類重大影響的檔案剖析,但規則也有例外。應有措施保障資料主體的權利,自由和合法利益。   GDPR第22條第二項a之例外規定,(履行契約所必需的),自動化個人決策時,應該作狹義解釋。資料控制者必須能夠提出分析、自動化個人決策的必要性,同時考慮是否可以採取侵害隱私較少之方法。   工作小組澄清,關於在要求提供有關自動化決策所涉及的邏輯上有意義的資料時,控制者應以簡單的方法,告訴資料主體其背後的理由或依據的標準,而不得總是以自動化決策所使用算法進行複雜的解釋或者公開完整的算法為之。所提供的資料應該對資料當事人有意義。   對資料主體提供關於處理自動化決策上有關重要性和預期後果的資料,其意義在於必須提供關於該資料之用途或資料未來處理以及自動化決策如何影響資料主體的重要訊息。例如,在信用評等的情況下,應有權知道其資料處理的基礎,資料主體並能對其作出正確與否的決定,而不僅僅是關於決策本身的資料。   「法律效果」是指對某人的法律權利有影響,或者影響到個人法律關係或者其契約上權利。   工作組並未將GDPR前言71段視為絕對禁止純粹與兒童有關的自動決定,指出僅在某些情況下才有其適用(例如,保護兒童的福利)。   在基於自動化處理(包括分析)以及基於哪些決策產生法律效應或類似顯著效果的基礎上對個人方面進行系統和廣泛評估的情況下,進行資料保護影響評估並不局限於「單獨」自動化處理/決定。

TOP