2005 台日科技高峰論壇 揭示綠色環保的新契機

  「 2005 台日科技高峰論壇」於本﹙九﹚月 16 17 日在台北圓山飯店盛大展開,與會者包括台日高階產官學研代表,分就環境政策、環保科技及綠色產品等議題進行交流,研擬未來可能進行的合作模式。


  於第一天開幕式中,亞東關係協會科技交流委員會主任委員蕭萬長即表示,藉由科技論壇可以增加政策和策略的相互了解,並減少重複浪費的研發
藉由知識相互激盪可以維持競爭力和高度經濟成長,創造雙贏的局面。日本交流協會台北事務所的池田維代表則指出,先前日本於八大工業高峰會議中所倡議的 3R(REDUCE REUSE RECYCLE) 觀念,獲得各國極力贊成,他希望將日本特性表現在本次研討內容中,以加強彼此合作。


  台日科技高峰論壇從
2003 4 月成立後,今年乃第三度在台灣舉行,與會貴賓包括日本眾議員水野賢一﹙ Mizuno, Kenichi 以「日本環境政策」發表專題演說;地球環境戰略研究機關理事長森 ( 山鳥 ) 昭夫﹙ Morishima, Akio ﹚則以「建構環保型產業」為題,自法律觀點說明,日本政府如何透過修訂法規之方式,逐步落實 3R 理念及其他永續發展措施;除此之外,日本 JST 、東京大學、北九州市立大學、日立製作所、東元電機、豐田汽車、福特六和汽車等台日環保科技代表亦分就「綠色產品」、「環保科技」等面向擬定專題發表談話。預料本次研討內容,對於未來台日科交流將能形成實質的幫助 並為未來科技發展指出綠色環保的新契機。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 2005 台日科技高峰論壇 揭示綠色環保的新契機, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=463&no=67&tp=1 (最後瀏覽日:2026/02/16)
引註此篇文章
你可能還會想看
東京都公布「新創全球創新政策」

東京都政府在2022年底發布了「新創全球創新政策」,希望能透過新創全球化的發展帶動產業年輕化,挽救東京在全球新創圈的頹勢。2022年新創生態城市排名東京名列第12名,在其之前的亞洲城市包含第5名的北京、第8名的上海及第10名的首爾,說明了東京在亞洲城市的新創生態排名不如其城市發展一樣的領先群雄。其手段包含在2023年2月以Sustainable High City Tech Tokyo(永續科技城市東京,簡稱為SusHi Tech Tokyo,取壽司的日文諧音)為題,展開一連串將東京打造成新創城市的策略。 關於「新創全球創新政策」中法制方面的政策規劃如下: 1.重新設計法規以培養國內企業家-掌握新創公司的需求,舉行說明會或交流會,來具體後續修法內容。除此之外建立伴走支援制度蒐集新創事業之需求,整合需求對接各主管機關,並協助制度修改之後續追蹤。 2.重新設計全球企業家進入日本的法規-為了增加東京本土的創業公司數量,並加速東京創業公司的全球擴張,制定從海外吸引高級人才的規定,將提出一系列放寬高技能人才簽證簽發條件的特區提案。 3.協助日本新創企業留住外國人才-鬆綁留日簽證規定,使在日一流大學畢業的高階外國人才得於畢業後進入日本新創企業就業或自行成立新創企業。 其他包含結合相關單位包含大學、財團法人與政府部門一同為新創提供支持、培育年輕人創業精神及全球化技能、辦理全球性活動City-Tech.Tokyo並以全國一個品牌的方式向國際推廣日本新創,透過這個「新創全球創新政策」讓日本新創生態發展奪回亞洲冠軍拚向世界前段班。 綜觀來看,東京的「新創全球創新政策」以城市做主體,展現了東京轉變的決心,不只要走在日本最前端更是要走在世界城市的前端。

日本政府研擬修正「能源使用合理化法」以提升能源效率

  日本經濟產業省於3月13日將「能源使用合理化法(エネルギーの使用の合理化に関する法律,簡稱節能法)」修正草案送交國會審議,節能法對於日本之能源供需之穩定具有重大貢獻,也是永續發展之必要法制,由於近年來民生及產業部門之能源消耗持續增加,提升該部門之能源使用效率成為當務之急。   本次修正草案主要內容如下:在因應民生用電尖峰時刻之電力需求上,除了原本之節能政策外,強化電池及能源管理系統(含建築及家庭能源管理系統:Building Energy. Manager System&Home Energy Management System, 簡稱BEMS、HEMS)之運用、自主發電設備之建構、蓄熱式與天然氣式空調及建築節能改造,以減少尖峰時期之用電需求;在建築材料節能要求上,制定各種建築材料之節能標準,使新建築達成低能源消耗之節能標準;並擴大Top Runner制度(凡適用品項欲上市之新產品均須優於現行市面上所有能源產品之耗能標準)之機器設備適用對象。   由於日本於福島核災後面臨供電吃緊之情況,提升能源效率並節約能源消耗成為當務之急,新修正草案課予建築材料之節能義務標準,希望藉由該草案之通過實行,有效抑制電能消耗。

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)

英國推出《藥品和醫療器材法》草案

  英國政府於2020年2月13日發布了《藥品和醫療器材法》(Medicines and Medical Devices Bill)草案。根據英國國民保健署(NHS)的聲明,新法草案修改以及補充了現有的英國藥品、醫療器材、臨床試驗監管框架,確保英國能夠開發具有開拓性的醫療技術。   本次草案的提出原因之一為英國計劃自2020年12月31日起退出歐盟,過去英國藥品與醫療器材法律乃援引歐盟相關指令與規則(例如:歐盟醫療器材法規,Medical Device Regulation, (EU) 2017/745),一旦脫歐過渡期結束,英國將無法再透過1972年《歐洲共同體法》(ECA 1972)援用歐盟的規定來規範與更新藥品、醫療器材與臨床試驗法律。   本次法案另有幾項新增重點: 醫療器材主管機關英國藥品和醫療產品監管署(Medicines and Healthcare Products Regulatory Agency)成為唯一有權簽發執行通知書(enforcement notices)的機關。 草案第23條明確指出哪些違反英國《2002年醫療器材法規》(Medical Devices Regulations 2002)的行為可能導致刑事犯罪。 草案第26條針對違反英國《2002年醫療器材法規》的人有新的民事制裁(civil sanctions)規範框架。例如在本法草案附表1(Schedule 1)中提及將賦予內閣大臣權力,得對違反《2002年醫療器材法規》之個人處以罰款(monetary penalty)。 草案第34條賦予內閣大臣權力向公眾分享有關醫療器材的資訊,例如受個資法保護或屬商業機密的醫療器材安全的資訊。 目前法案草案在國會二讀階段。

TOP