美國食品藥物管理署(U.S. Food & Drug Administration, FDA)在2021年1月12日發布有關人工智慧醫療器材上市管理的「人工智慧/機器學習行動計畫」(Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan)。該行動計畫的制定背景係FDA認為上市後持續不斷更新演算法的機器學習醫療器材軟體(Software as Medical Device, SaMD),具有極高的診療潛力,將可有效改善醫療品質與病患福祉,因此自2019年以來,FDA嘗試提出新的上市後的監管框架構想,以突破現有醫療器材軟體需要「上市前鎖定演算法、上市後不得任意變更」的監管規定。 2019年4月,FDA發表了「使用人工智慧/機器學習演算法之醫療器材軟體變更之管理架構—討論文件」(Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine earning (AI/ML)-Based Software as a Medical Device (SaMD) - Discussion Paper and Request for Feedback)。此一諮詢性質的文件當中提出,將來廠商可在上市前審查階段提交「事先訂定之變更控制計畫」(pre-determined change control plan),闡明以下內容:(1)SaMD預先規範(SaMD Pre-Specification, SPS):包含此產品未來可能的變更類型(如:輸入資料、性能、適應症)、變更範圍;(2)演算法變更程序(Algorithm Change Protocol, ACP):包含變更對應之處理流程、風險控制措施,以及如何確保軟體變更後之安全及有效性。 根據「人工智慧/機器學習行動計畫」內容所述,「事先訂定之變更控制計畫」構想被多數(包含病患團體在內)的利害關係人肯認,並於相關諮詢會議當中提出完善的細部建言。FDA將根據收到的反饋意見,於2021年以前正式提出有關人工智慧/機器學習上市後監管的指引草案(Draft Guidance),並持續研究提高演算法透明度、避免演算法偏見的方法。
美國平等就業機會委員會發布「評估就業篩選程序中使用軟體、演算法及AI之不利影響」技術輔助文件美國平等就業機會委員會(Equal Employment Opportunity Commission, EEOC)於2023年5月18日發布「根據 1964 年《民權法》第七章評估就業篩選程序中使用軟體、演算法和AI之不利影響」(Assessing Adverse Impact in Software, Algorithms, and Artificial Intelligence Used in Employment Selection Procedures Under Title VII of the Civil Rights Act of 1964)之技術輔助文件(下簡稱「技術輔助文件」),以防止雇主使用自動化系統(automated systems)對求職者及員工做出歧視決定。 該技術輔助文件為EEOC於2021年推動「AI與演算法公平倡議」(Artificial Intelligence and Algorithmic Fairness Initiative)計畫的成果之一,旨在確保招募或其他就業決策軟體符合民權法要求,並根據EEOC 1978年公布之「受僱人篩選程序統一指引」(Uniform Guidelines on Employee Selection Procedures, UGESP),說明雇主將自動化系統納入就業決策所應注意事項。 當雇主對求職者與員工做出是否僱用、晉升、終止僱傭,或採取類似行動之決定,是透過演算法決策工具(algorithmic decision-making tool),對特定種族、膚色、宗教、性別、國籍或特定特徵組合(如亞洲女性),做出篩選並產生不利影響時,除非雇主能證明該決策與職位工作內容有關並符合業務需求,且無其他替代方案,否則此決策將違反《民權法》第七章規定。 針對如何評估不利影響,雇主得依UGESP「五分之四法則」(four-fifths rule),初步判斷演算法決策工具是否對某些族群產生顯著較低的篩選率。惟EEOC提醒五分之四法則推導出之篩選率差異較高時,仍有可能導致不利影響,雇主應依個案考量,使用實務常見的「統計顯著性」(statistical significance)等方法進一步判斷。 其次,當演算法決策工具係由外部供應商所開發,或由雇主授權管理人管理時,雇主不得以信賴供應商或管理人陳述為由規避《民權法》第七章,其仍應為供應商開發與管理人管理演算法決策工具所產生之歧視結果負責。 最後,EEOC鼓勵雇主應對演算法決策工具進行持續性自我評估,若發現該工具將產生不利影響,雇主得採取措施以減少不利影響或選擇不同工具,以避免違反《民權法》第七章。
英國資訊委員辦公室(ICO)發布指引以因應歐盟一般資料保護規則(GDPR)正式施行為因應歐盟一般資料保護規則(General Data Protection Regulation,簡稱歐盟GDPR)於2018年5月正式施行,英國資訊委員辦公室(Information Commissioner’s Office, 簡稱ICO)於2017年11月21日發布一般資料保護規則指引(guide to general data protection regulation)(簡稱一般資料保護規則指引)。 ICO所發布的一般資料保護規則指引,係用於解釋歐盟GDPR的各條規定,協助企業符合歐盟GDPR的各項要求,適用於企業中擔負資料保護義務責任者。ICO說明本指引文件致力於擴展與歐盟GDPR、ICO所制定公告之其他指引文件、歐盟第29條工作小組制定公告之相關指導文件的聯結。歐盟第29條工作小組係由歐盟各會員國的資料保護機構代表組成,而ICO即為英國派任於該工作小組之資料保護機構代表。 ICO發布的一般資料保護規則指引,內容簡述如下:本指引文件係在建構歐盟GDPR法規的架構,將反映歐盟GDPR未來的導引與如何呈現,本指引內容有歐盟GDPR的重要定義(如歐盟GDPR適用對象、歐盟GDPR所欲保謢之資料種類)、歐盟GDPR原則、個人資料處理、當事人同意、當事人權利介紹、資料保護、資料洩漏處理、未成年人保護等議題之參考要點;並針對部分議題,設計有簡易清單,供參閱者勾選確認。 英國ICO除採取對外發布一般資料保護規則指引外,另有制定數個線上工具,協助企業依其身分別(如資料管理者或資料處理者),選擇線上工具進行自我檢視是否符合歐盟GDPR要求,期以協助英國業者為今(2018)年5月GDPR正式施行,能作更充分的準備。
澳洲隱私保護辦公室檢討實施「選擇退出機制」後對「我的健康紀錄系統」之影響澳洲隱私保護辦公室(Office of the Australian Information Commissioner,OAIC)在2019年11月發布的「2018-2019年度健康數位資料報告」(Annual Report of the Australian Information Commissioner’s activities in relation to digital health 2018–19),主要說明澳洲政府實施「選擇退出機制」(opt-out)後,對「我的健康紀錄系統」(My Health Record System)(下稱系統)發生的影響,以及有將近1成的國民大量選擇退出系統,造成系統的醫療健康資料統計困難之檢討。 OAIC認為會發生國民大量選擇退出系統的原因,主要是不信任政府對系統資料保護及不清楚系統使用功能有關,因此提出年度報告,內容如下: 一、改善民眾對醫療資料保護的不信任,例如對醫療業者,開發保護病患隱私的指導教材,防止、外洩即時處理的能力。 二、加強宣傳,例如開發線上資源、影音等,讓民眾在使用系統時能有更清楚認識,且對選擇退出有更明確的認知。 三、改進系統設計,讓民眾能更清楚的看見使用說明,也能隨時掌握在系統上的資訊、設置警報提醒來防止他人侵入、也增加取消功能使資料達到永久刪除的效果。 建置該系統之目的,是因為國家有蒐集與使用國民的醫療健康資料需求,國民也能使用系統查看醫療紀錄、藥物過敏紀錄、曾使用與正在使用的藥物、血液檢查等;醫療人員也能透過醫療資料之電子化,減少重複及不必要的醫療檢查、對症下藥、避免因過敏引起的反應等,將醫療資源做有效的運用。 系統建置是依據「我的健康紀錄法」(My Health Records Act 2012)第三章第一節註冊規定,要將國民的醫療健康資料納入系統,但不願意加入者,得選擇退出系統。而澳洲政府依據此法訂定選擇退出機制,2018年7月正式實施,要求全民強制加入系統,同時開放選擇退出機制,讓不願意加入系統的國民能選擇退出系統;選擇退出機制截止日期原先在2018年10月中旬,但在國民大量反應下,澳洲政府決定延至2019年1月底;在選擇退出機制的實施截止後,OAIC在2019年11月對選擇退出機制做出檢討報告,期望能透過檢討報告提出的建議來增強民眾對系統的信任與促進系統使用率。