為了有效管理歐洲食品安全局(European Food Safety Authority, EFSA)內部各項活動間之利益管控與監督,EFSA日前於3月5日公布利益申報(Declarations of Interest, DOIs)施行規則(Implementing Rules),並計畫於2012年7月1日正式實施,且同時搭配一個為期4個月的過渡(Transition Period)配套措施方案。該利益申報施行規則,乃為EFSA於今年初所核准之「獨立性與科學決策過程」(Independence and Scientific Decision-Making Processes)政策的基礎規範項目之一。 本次EFSA所頒布之利益申報施行規則,其訂定之理由係因,原任職於EFSA旗下基因工程植物之首席風險評估專家,轉任至一家專門研發及生產該種植物之生物科技公司;為避免並且釐清相關因該事件所衍生之利益衝突問題,乃制定本規範。故此,為具體有效管理EFSA內部人員與其他涉及EFSA各項活動之機構間的利益監督事宜,EFSA遂進一步於今年初開始著手進行相關措施之規劃。目前該利益申報施行規則除了主要針對EFSA旗下之各層級人員訂定各項利益類型之規範準則外,更重要的是,其亦提供其旗下之專業科學研究人員,各項能有效具體確認其利益界線之劃分的保護措施。由於該利益申報施行規則授與EFSA選取與管理利益申報議題若干彈性,因此EFSA能具體且有效的利用相關規範延攬頂尖研究人員,進而協助EFSA提升其內部研發人員之創新研發能力。 政府機關成員之利益申報與迴避問題,乃為全球各國政府需面對之問題,而對於如何有效且彈性的進行相關議題之管控,更是相關政策制訂時需加以考量之點。EFSA之利益申報施行規則不僅有效管理內部人員之利益衝突與申報問題,同時亦藉由彈性的管理規範方式,延攬優秀頂尖人才,達到具體提升研發水準之功效;對此,EFSA之規範方式與運作成效,實值得加以觀察與效仿。
美國聯邦法官裁決AI「訓練」行為可主張合理使用美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。
美國白宮發布「美國就業計畫」說明文件,加強投資基礎建設與科技研發美國白宮於2021年3月31日發布「美國就業計畫」說明文件(FACT SHEET: The American Jobs Plan),針對美國當前所面臨基礎建設老舊、失業率攀升、氣候變遷與來自中國的技術競爭等問題,預計在未來八年內每年投資約GDP的1%,共投入約2兆美元(約合新台幣56兆元)於修復與升級國家基礎建設、振興製造業、投資基礎科學研究、支持供應鏈、推動能源轉型、幼兒教育及長照醫療等項目上。 本說明文件指出,雖然美國為世界上最富裕的國家,但許多基礎建設都逐漸變得老舊或不合時宜,部份人民仍無法享有高速網路與價格可負擔的房屋,而在疫情的衝擊下不僅導致工作機會喪失,更威脅到國家經濟安全。除此之外,美國在科技研發、製造與人才培育上開始落後於最大的競爭對手,顯示政府有必要加快在基礎建設與科技研發的投資,以重建美國的國家競爭力並創造更多的就業機會。 針對投資基礎建設部分,包含交通基礎建設如修復高速公路、橋樑,並升級港口、機場及運輸系統,並改善飲水、電力與網路布建,提供全體人民可負擔、可靠的高速寬頻服務;除了提高基礎建設在面對氣候變遷危機時的韌性,也提供美國人民更安全、可靠、便利的生活條件。在更新基礎建設的同時,將採用符合永續性及創新性的建築材料,並優先使用在美國製造與販售的零組件,以支持國內產業與創造就業機會。 而在投資科技研發部分,相對於中國大陸正大力投資於研發,其研發支出為世界第二,美國在投資科技研發占GDP比率卻持續下降,為了支持研發團隊克服高度創新(high-innovation)技術的障礙,有必要提高對於國內研究人員、實驗室及大學院校的投資。因此白宮呼籲國會支持國家科學基金會(NSF)投資500億美元設立技術局(technology directorate),用於整合國家研究資源,投入半導體及高級通訊技術、高級能源技術及生物技術的研發,並預計投資400億美元於全國實驗室研究設施與網路的升級。 除此之外,白宮規劃投資350億美元於研發克服氣候變遷危機的技術解決方案,包括開發減少排放和建立氣候適應力的新方法,並呼籲國會投資100億美元於傳統黑人大學(HBCUs)、弱勢族群教育機構(MSIs)的科技研發以避免種族與性別落差,投資200億美元於區域創新中心及社區再生基金,向國家標準技術協會(NIST)投資140億美元推動產官學合作研發,以及規劃310億美元用於中小企業信貸、創投及研發資金,特別是地區型的小型孵化器及創新聚落,以支持有色人種及弱勢族群的新創事業成長。
美國推動創新研究獎勵方案,鼓勵中小企業投入潔淨能源研發美國能源部今(2012)年5月宣布1千1百萬美元的預算,獎勵小型企業發展潔淨能源創新研究與科技。美國的小型企業並非以營運的領域來區分,而且必須合於美國聯邦法規(13 CFR 121)中對於小型企業的規範,另外,美國小型企業管理局(U.S. Small Business Administration,SBA)對於各種營利活動亦建立有大小區分的標準,依照不同的行業別,就員工人數或營業額的數目訂立區分標準。因為企業大小的區分,在美國政府採購契約發包的程序上極為重要,因為他們確保,為大小不等的小企業之間提供公平的競爭基準,而這些區分標準同時也適用在SBA的貸款/補助計畫以及能源部小型企業創新研究計畫(Small Business Innovation Research ,SBIR)與小型企業技術移轉計畫(Small Business Technology Transfer ,STTR)上。 能源部此次小型企業創新研究計畫是歐巴馬政府為扶持小型企業,增加美國就業機會政策的一部分,計畫內容在於,給予每個小型企業最高15萬美元的補助金,只要企業的業務致力於發展創新能源技術,製造新的工作機會,以提高美國在世界的經濟競爭力,這些獲選企業在未來兩年內,可以參加第二階段的競賽,並將有機會獲得高達2百萬美元的獎勵金,目前已有67個小型企業,總共75項創新研究計畫,包括風力渦輪機、燃料電池技術以及煤炭能源等的相關研究工作,這些獲選的小型企業遍佈全美各州。 美國政府認為,小型企業為其經濟體的主幹,提供全美二分之一的工作機會,並且在國內持續製造三分之二的新就業機會,重要的是,這些企業正在幫助美國減輕對進口石油的依賴,保護美國的環境,降低環境污染。而為了支持這些小型企業在國內經濟體所扮演的重要角色, 在能源部主責進行的SBIR計劃和STTR計劃中,持續支持科學卓越和技術創新,以達強化國家經濟的目標。