日本2017年4月施行「資金結算法(資金決済法)」修正,正式承認虛擬貨幣作為支付工具,其本身得為買賣(與法定貨幣為交換),具有財產價值得以電子方式移轉之電子資訊,但是不等於法定貨幣。依據該法第2條第5項之定義規定,具有以下性質之財產價值者為虛擬貨幣:(1)對於不特定人,得作為代金支付之使用,而且與法定貨幣(日圓或美元等)得為互相交易;(2)以電子數位技術為紀錄與移轉;(3)非為法定貨幣或法定貨幣所成立之資產(預付卡等)。 2014年以東京為據點世界最大比特幣交易所Mt.Gox發生破產,導致鉅額比特幣消失事件,為了保護消費者與防止洗錢而為法律制度之整備。該法對於虛擬貨幣交易所為管制,(1)要求提供虛擬貨幣交易服務之交易所必須為登記(必須為股份有限公司以及資本額1000萬日圓以上);(2)對於利用者必須為適切之資訊提供;(3)為了適切管理利用者財產,業者必須將利用者之財產及虛擬貨幣與自身之財產分離管理;(4)為了防制洗錢,交易時必須為本人確認;(5)對於交易所為日常業務監督,必須作成帳冊書類及報告書,並提出具有會計師或監察法人簽證稽核之報告書,管制機關得為進入檢查、行使業務改善命令等之監督權。今年9月底,有11家完成登記程序,12月4日有5家完成登記,共16家目前為登記合法之比特幣交易所。 近來日本大型家電量販店等已有承認比特幣等虛擬貨幣可以作為支付手段,其他承認虛擬貨幣作為支付手段的商店也漸漸增加中,虛擬貨幣與一般民眾的生活漸為結合。但是虛擬貨幣仍有其風險,從國民或消費者保護觀點,政府也在相關處所加入明顯警語,提醒民眾虛擬貨幣並非法定貨幣,國家不保證其價值,而且虛擬貨幣之價值,會因買賣或經濟狀況等會有價值波動情形。利用虛擬貨幣交換業者之服務時,應注意僅得以在金融廳登記有案之業者為對象,同時此等業者負有說明義務,對於利用者有提供虛擬貨幣相關機制之資訊(包含交易內容與手續費),利用者應先聽取後,再決定是否為交易。利用者對於虛擬貨幣交易經歷或戶頭餘額應隨時確認,而業者至少3個月一次有提供利用者交易紀錄與餘額資訊之義務。
美國對法國數位服務稅採取301條款貿易報復美國貿易代表署(Office of the United States Trade Representative, USTR)於2020年7月10日針對法國數位服務稅(Digital Services Tax)首度採取「301條款」貿易報復。《1974年貿易法》第301條授權美國政府在對外之國際貿易協定未獲執行,或貿易夥伴採取不公平貿易行為時,進行調查及後續的貿易報復。法國作為全球第一個課徵數位服務稅的國家,法國國民議會於2019年7月11日通過數位服務稅,美國隨即於2019年7月16日開啟「301條款調查」並召開公聽會。美國貿易代表署於2019年12月6日發布調查報告(Report on France’s Digital Services Tax)指出法國數位服務稅是針對美國不合理或歧視性的貿易帳礙。美國總統川普和法國總理馬克宏於2020年1月23日達成暫緩數位服務稅課徵之共識,然而法國在6月再度實施數位服務稅。美國遂對法國啟動「301條款」貿易報復,貿易報復項目係法國進口美國的化妝品、手提包等貨品課徵25%的稅,受波及的貨品粗估高達13億美元。儘管美國企圖透過貿易報復作為警示,許多國家仍持續研擬採取或已經開始課徵數位服務稅。美國貿易代表署指出:「過去兩年,部分國家研擬或已經開始採取數位服務稅,而有相當多的證據可以證明數位服務稅是針對美國大型科技公司。」繼法國之後,美國貿易代表署於2020年6月2日再度開啟「301條款調查」,此次調查對象包括奧地利、巴西、捷克、歐盟、印度、印尼、義大利、西班牙、土耳其和英國等。
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
大倫敦政府推動城市資料市集,期尋求資料利用及隱私保護間之平衡,建立民眾對資料市集之信賴資料利用之層面越來越廣,且無論是基於商業或公益目的,產生越來越多難題。穿戴式裝置及物聯網的發展,亦使得資料之蒐集利用及界線等問題更顯其重要性。有鑑於此,大倫敦政府(Greater London Authority, GLA)在今(2016)年3月公布「倫敦城市資料策略」(London City Data Strategy),積極推動「城市資料市集」(City Data Market),期將倫敦打造成世界首屈一指的智慧城市。 增加大眾對資料市集之信賴並減少疑慮乃「倫敦城市資料策略」之一環,近年在英國有一系列新法上路,除新的歐盟資料保護規範(GDPR)外,英國國內有關「開放銀行」(open banking)之新規範,以及已有能源及電信公司參與之MiData initiative等,上述機制均為促使個人更容易掌握其個資被利用之狀況。 大倫敦政府亦推動「倫敦資料交易」(London Data Exchange),大眾可利用此一機制掌握其個資流向。其中有關建置新的數位符號(digital tokens of proof),使民眾未來可利用此等符號證明符合特定資格,例如在道路受檢時,毋須拿出駕照說明個人姓名、地址、出生年月日等資料,利用該等符號,便可判定符合駕駛年齡。 近期,大倫敦政府透過資料科學合作夥伴(Data Science Partnership)推動資料科學倫理架構(Framework for Data Science Ethics),著手研究民眾對資料交易新機制的反應,試圖在資料利用與法律和道德問題間尋求平衡。