世界四大電腦晶片業者決定與紐約州合作,在今後五年內出資 5.8億美元,研究發展下一代電腦微晶片製造技術。紐約州預定出資1.8億美元,美國IBM、超微半導體(AMD)、美光科技(Micron)與德國英飛凌預定各出五千萬美元的現金與設備,另2億美元由多家提供物料與設備的廠商提供。惟世界最大晶片廠商英特爾(Intel)並未參與此計畫,英特爾目前在x86微處理器市場中,占有銷售量的80%、銷售額的90%。
此國際奈米蝕刻事業( International Venture for Nanolithography, INVENT)計畫的基地,預定設在奧伯尼紐約州立大學奈米科學與工程學院,預期共有500多位研究人員、工程師與其他人員,投入此計畫。
奈米科技是研究分子與原子級的科學,此一計畫研究重心是利用光線,蝕刻大約頭髮直徑十萬分之一大小的電路,讓參與公司及早取得與學習應用研究出來的蝕刻工具。由於近年半導體速度與複雜性快速提高,晶片業者製造更小、更快晶片的難度增加,研究發展成本飛躍上升,業界體認到必須合作,才能負擔。一具蝕刻工具成本可能高達 2500萬美元,蝕刻工具進步攸關晶片廠商繼續縮小晶片規模,使每個晶片具有更多運算與儲存能力。目前生產的最先進晶片運用90奈米科技,晶片廠商希望從2006或2007年起,生產65奈米晶片。
本文為「經濟部產業技術司科技專案成果」
數位建設在數位化浪潮以及AI來臨的年代,顯得非常重要,也是世界各國重視的議題之一,歐盟於2024年2月提出了「如何掌握歐洲的數位基礎建設需求?」(WHITE PAPER How to master Europe's digital infrastructure needs?)白皮書來匯集專家意見至6月30日止。 數位基礎建設所涵範圍甚廣,包含資訊科技所有的技術系統以及網際網路等等。如果沒有這些建設,將無法順利完成數位轉型及提升競爭力,況且人工智慧以及物聯網時代的到來,正在改變全球消費者的習慣,因此落實數位基礎建設佈建具有相當之必要性。白皮書開門見山地提到數位基礎建設的諸多優點,但要完成目標,需克服許多難題。 數位基礎建設的佈建需投入大量資金,更需仰賴公私協力才可順利達標,因此難題主要圍繞在企業實力以及是否能夠有相當之吸引力,促使企業投資者以龐大的金流支援,而企業投資者之目標以獲利為原則,因此如果要吸引大量投資人進場,必須提出成功施行並獲利的案例來拋磚引玉。白皮書內也提到,歐洲境內固網行動匯流尤其光纖及5G網路覆蓋率較世界各國來的低,且歐盟因為成員國眾多,缺乏單一的市場,難統籌規範,更何況歐盟對於複雜的數位基礎建設生態中,針對參與者沒有明確規範,諸如投入電子通訊網路建置之雲端供應商其權利義務關係,使得參與者無所適從,如何去克服這些絆腳石將會是歐盟的重大挑戰。 為克服數位基礎建設的難題,白皮書建議以三個支柱作為框架,其一為打造共同連結的運算網路系統(Connected Collaborative Computing)作為歐盟經濟體的中樞神經;其二為建立單一的數位市場,整合各國市場機制並建立完善法規制度;最後為所有數位基礎建設須安全且富有韌性,否則遭到攻擊,將會威脅歐盟各國。 數位化的時代,不僅可提提升運作效能,更能促進永續發展,然而工欲善其事,必先利其器,數位基礎建設為不可少之一環,鑒於我國推動數位建設佈建也可能面臨投資誘因的難題,歐盟白皮書所提到的建議以及後續的發展,或許值得我國持續關注。
加拿大競爭局發布人工智慧與競爭諮詢報告加拿大競爭局(Competition Bureau Canada,下稱競爭局)為更了解人工智慧如何影響或促進競爭,於2025年1月27日發布人工智慧與競爭諮詢報告(Consultation on Artificial Intelligence and Competition)。競爭局於意見徵詢期間獲得來自學術界、法律界、產業協會及大型科技公司的意見書。 諮詢報告彙整意見書內容並列出以下重點: 1. 人工智慧從資料輸入、基礎模型至終端產品或服務各階段皆在快速發展,可以為市場帶來新的競爭或阻礙競爭,人工智慧可能影響競爭原因包含資源依賴、資料控制及市場參進障礙等等。 2. 人工智慧領域中大規模投資是技術成長的重要關鍵,大型企業可藉由市場力量減少競爭或進行創新,少數大型企業因擁有較高的投資能力及數據資料專屬性,在基礎架構層(運行人工智慧所需的工具,如人工智慧晶片、雲端運算及超級電腦等)中佔有極高的市場份額,但也有部分意見認為人工智慧市場仍蓬勃發展中,亦有企業或學術機構未過度依賴專有數據但仍能開發出產品。 3. 人工智慧可能導致反競爭行為,企業雖可透過垂直整合來降低成本並提高效率,但可能會減少現行市場內部競爭,或透過具有人工智慧的演算法進行定價,達到操縱市場價格的行為,現行反壟斷法未來是否可以解決此一問題還有待觀察。 藉由諮詢的過程,競爭局更能掌握人工智慧發展、也了解公眾對話的重要性,意見書亦有助於該局未來提出兼顧人工智慧發展及促進市場競爭之政策措施。 我國公平交易委員會已於112年5月成立AI專案小組,負責掌握國際間人工智慧相關競爭議題的趨勢與發展,並針對現行人工智慧發展與競爭法執法研提政策配套措施,我國公平交易委員會與加拿大競爭局對於人工智慧與市場競爭議題之後續動態,值得持續追蹤。
美國「人工智慧應用管制指引」美國白宮科學與技術政策辦公室(The White House’s Office of Science and Technology Policy , OSTP)於2020年1月9日發布「人工智慧應用管制指引」(Guidance for Regulation of Artificial Intelligence Application),為美國政府機關起草人工智慧規範並進行管制時提供指引,該指引內要求各機關之規範應遵循以下10項人工智慧原則: 一.公眾對AI之信任:政府對AI之管制或其他措施應促進AI之可靠性、健全性,且於應用上應具備可信性。 二.公共參與:政府應提供機會讓利害關係人參與AI管制規範立法程序。 三.科學實證與資訊品質:科學實證與資訊品質:政府機關發展AI之相關技術資訊,應透過公開且可驗證之方式提供給大眾參考,以提高大眾對AI之信任與協助政策制定。 四.風險分析與管理:應採取以風險為基礎之分析評估方法,確認哪些風險係可接受之風險,或那些風險代表無法接受之損害或所失利易大於預期利益。 五.利益與成本:政府於擬定相關規範時,應小心評估AI對於整體社會之利益,與預期外之效果。 六.彈性:法規應持續滾動檢視與調修以因應AI之創新應用。 七.公平且無歧視:政府應針對AI之應用與決策,考量公平與無歧視相關議題。 八.揭露與透明:透明度與揭露程序之建立可提升公眾對AI應用之信任。 九.安全:政府應特別注意AI系統內所儲存或傳輸資訊之安全與相關安全維護控制措施。 十.跨機關合作:政府各部會或機構間應相互合作與分享經驗,以確保AI相關政策之一致性與可預測性。
何謂「創新採購」?歐盟為推動歐洲單一市場,在2014年2月26日通過三項新的政府採購指令,包括「一般政府採購指令」、「公用事業政府採購指令」、「特許採購指令」,其修正宗旨主要在於從下列四個改革方向改善採購招標程序: 1.簡化及採用彈性的政府採購程序 2.擴大適用電子招標; 3.改善中小企業參與招標程序; 4.於採購招標程序中納入策略性目的之考量,以實現「歐洲2020策略(European Strategy 2020)」之創新目標。 因此一般政府採購指令第26條明訂,要求會員國應提供除原有之公開招標(open procedure,政府採購指令第27條)、限制性招標(restricted procedure,政府採購指令第28條)程序外,應另外提供創新夥伴(innovation partnerships,政府採購指令第29條)、競爭談判(competitive procedure with negotiation,政府採購指令第30條)及競爭對話(competitive dialogue,政府採購指令第31條)三種程序。 其中最重要者,在於將政府採購視為其達成創新政策之政策工具,在招標程序中推動所謂的創新採購(Public Procurement for Innovation, PPI)及商業化前採購(Pre-commercial procurement, PCP)。 前者係指創新解決方案幾乎或已經少量上市,不需要再投入資源進行新的研發(R&D)工作。而後者則針對所需要改善的技術需求,還沒有接近上巿的解決方案,需要再投入資源進行新的研發。採用競爭方法及去風險,經由一步一步的方案設計、原型設計、開發及首次產品測試來比較各替代方案的優缺點。