全球四大晶片業者共同研發奈米蝕刻技術

  世界四大電腦晶片業者決定與紐約州合作,在今後五年內出資 5.8億美元,研究發展下一代電腦微晶片製造技術。紐約州預定出資1.8億美元,美國IBM、超微半導體(AMD)、美光科技(Micron)與德國英飛凌預定各出五千萬美元的現金與設備,另2億美元由多家提供物料與設備的廠商提供。惟世界最大晶片廠商英特爾(Intel)並未參與此計畫,英特爾目前在x86微處理器市場中,占有銷售量的80%、銷售額的90%


  此國際奈米蝕刻事業( International Venture for Nanolithography, INVENT)計畫的基地,預定設在奧伯尼紐約州立大學奈米科學與工程學院,預期共有500多位研究人員、工程師與其他人員,投入此計畫。


  奈米科技是研究分子與原子級的科學,此一計畫研究重心是利用光線,蝕刻大約頭髮直徑十萬分之一大小的電路,讓參與公司及早取得與學習應用研究出來的蝕刻工具。由於近年半導體速度與複雜性快速提高,晶片業者製造更小、更快晶片的難度增加,研究發展成本飛躍上升,業界體認到必須合作,才能負擔。一具蝕刻工具成本可能高達 2500萬美元,蝕刻工具進步攸關晶片廠商繼續縮小晶片規模,使每個晶片具有更多運算與儲存能力。目前生產的最先進晶片運用90奈米科技,晶片廠商希望從20062007年起,生產65奈米晶片。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 全球四大晶片業者共同研發奈米蝕刻技術, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=483&no=0&tp=1 (最後瀏覽日:2026/01/17)
引註此篇文章
你可能還會想看
蘋果電腦(Apple)被判專利侵權須賠償美金1900萬元

  蘋果電腦(Apple)於2009年4月23日被美國德州東區地方法院判定侵害OPTi 公司之專利並且必須賠償美金$1900萬元。此項專利涉及記憶體之”predictive snooping” 技術。陪審團並認為蘋果電腦之行為構成故意侵權。蘋果電腦雖主張OPTi 公司之專利為無效,但此抗辯不為法院所採納。   OPTi 公司自2003年開始即放棄其原有的製造與販賣產品的生意,改經藉由提起侵權訴訟來獲取利益。除了控告蘋果電腦外,OPTi 公司也針對其”predictive snooping” 專利技術於同一法院對AMD 公司提出類似的專利侵權訴訟。由蘋果電腦此次被判敗訴來看,OPTi 公司似乎已準備好擴大藉由它所擁有的predictive snooping” 技術專利以提起訴訟的方式來獲取授權收益。如同以往,蘋果電腦未對此次被判侵權賠償做出任何評論。

美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見

  美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。   依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。   依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。   此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。   最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。

生物遺傳資源歸屬之國際規範分析

美國有限合夥發展於我國之借鏡

TOP