具外電報導,美國一阿拉巴馬州居民已向法院提起告訴,控告蘋果公司(APPLE)手機(iPhone 3G)之上網速度緩慢,與其廣告之陳述大相逕庭。 興訟人Jessica Alena Smith於本月19日向美國北阿拉巴馬州地方法院提請訴訟,其於長達十頁之訴訟書中聲稱,APPLE iPhone 3G的速度比宣傳的速度慢,該廣告已有誤導之嫌。Smith要求代表其他用戶使這起訴訟變成一個聯合訴訟。 APPLE廣告聲稱iPhone 3G「一半的價錢,一倍的速度」,能更快地登入網路、上網、收發email、傳送簡訊等,但Smith認為其實際情況卻比廣告所說的緩慢。原告之代表律師表示,APPLE顯然已違背該產品出售時所做出的承諾。同時,更有些許使用者發現iPhone 3G容易發生通話或上網斷訊的情況。 經過幾週的沉默後,APPLE終於體認該產品確實存有訊號接收的問題。APPLE並已發佈「iPhone OS 2.0.2」軟體更新程式並稱能「修正問題」,且已置於iTunes供使用者免費下載,以改善iPhone3G的網絡連接性能。但其是否能修復使用者提出的上述問題,尚不得而知。 該訴訟中要求APPLE提供維修或更換瑕疵產品並負擔損害賠償與律師費用等。目前APPLE尚未對該項請求提出回應或發表評論。
歐盟對其成員國、其他歐洲國家以及區域鄰國的創新績效進行比較分析並公布2017年歐洲創新計分板報告於2017年6月20日,歐盟對於歐盟成員國、其他歐洲國家以及區域鄰國的創新績效進行比較分析,並發布2017年度歐洲創新記分板(European Innovation Scoreboard, EIS)年度報告。它涵蓋歐盟成員國以及冰島、以色列、前南斯拉夫的馬其頓共和國、挪威、塞爾維亞、瑞士、土耳其和烏克蘭。在全球少數指標中,EIS也對澳大利亞、巴西、加拿大、中國、印度、日本、俄羅斯、南非、韓國及美國進行了評估。 EIS 2017排名與以前的版本不同,EIS 2017的測量框架由27個指標組成,區分4個主要類別的10個創新層面: 政策框架是創新績效的主要驅動力,涵蓋3個創新層面:人力資源、有吸引力的研究體系及創新環境。 投資包括公共及私人投資研究與創新,區分外部融資支持及內部資源投資。 創新活動吸取公司層面的創新工作,涵蓋3個方面:創新者、中間者及智慧財產權。 創新如何轉化為整體經濟效益之影響力:就業影響及銷售效應。 EIS顯示歐盟的創新績效繼續增長,特別是由於人力資源的改善、創新型環境、自有資源投資以及有吸引力的研究體系。而瑞典仍然是歐盟創新領導者,其次是丹麥、芬蘭、荷蘭、英國以及德國,創新指數比歐盟平均值高出百分之二十。立陶宛、馬爾他共和國、英國、荷蘭以及奧地利則是增長速度最快的創新者。在全球創新比較中,歐盟僅次於加拿大及美國,但韓國及日本正急起直追,而中國在國際競爭中是發展最快的國家。
合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。
美國針對政府雲端運算應用之資訊安全與認可評估提案為建構政府雲發展的妥適環境,美國於今年度啟動「聯邦風險與認可管理計畫」(Federal Risk and Authorization Management Program, FedRAMP),由國家技術標準局(National Institute of Standards and Technology, NIST)、公共服務行政部(General Service Administration)、資訊長聯席會(CIO Council)及其他關連私部門團體、NGO及學者代表共同組成的跨部會團隊,針對外部服務提供者提供政府部門IT共享的情形,建構一個共同授權與持續監督機制。在歷經18個月的討論後,於今(2010)年11月提出「政府雲端資訊安全與認可評估」提案(Proposed Security Assessment & Authorization for U.S Government Cloud Computing),現正公開徵詢公眾意見。 在FedRAMP計畫中,首欲解決公部門應用雲端運算所衍伸的安全性認可問題,因此,其將研議出一套跨部門共通性風險管理程序。尤其是公部門導入雲端應用服務,終究會歸結到委外服務的管理,因此本計劃的進行,是希望能夠讓各部門透過一個機制,無論在雲端運算的應用及外部服務提供之衡量上,皆能依循跨機關的共通資訊安全評定流程,使聯邦資訊安全要求能夠協調應用,並強化風險管理及逐步達成效率化以節省管理成本。 而在上述「政府雲端資訊安全與認可評估」文件中,可分為三個重要範疇。在雲端運算安全資訊安全基準的部份,主要是以NIST Special Publication 800-535中的資訊安全控制項作為基礎;並依據資訊系統所處理、儲存與傳輸的聯邦資訊的敏感性與重要性,區分影響等級。另一部份,則著重在持續性的系統監控,主要是判定所部署的資訊安全控制,能否在不斷變動的環境中持續有效運作。最後,則是針對聯邦資訊共享架構,出示模範管理模式、方策與責任分配體系。