在近來國際食安問題事件頻傳的氛圍下,如何透過食品供應鏈相關資料的紀錄、串接與分析,達到食品追溯(Food Traceability)目的已成為全球性議題。有鑑於此,美國的全球食品追溯中心(Global Food Traceability Center, GFTC)在跨種類的食品供應鏈中針對數位資料的採集和追蹤,以建立共通架構為目的,提出食品追溯的「關鍵追蹤活動」以及「重點資料元素」,作為監管機構和產業界在建立追溯系統時可依循的標準。 由於現今食品供應系統涉及範圍大部分已擴及全球,其複雜性大幅提升了各國政府對整個食品產業的監管以及促進追溯實踐的困難度。隸屬美國食品科技研究所(IFT)的GFTC於2014年8月19日發表了一篇「食品追溯最佳實踐指南」(A Guidance Document on the Best Practices in Food Traceability)報告,指出當食品相關疫情爆發時進行食品追溯即有全球性的需求;該指南主要以食品安全及追溯相關規範的立法者和食品產業界為對象,針對六大類食品產業-烘焙、奶製品、肉類及家禽、加工食品、農產品和海產類提供一個可茲遵循的追蹤架構。在一條食品供應鏈中,有許多環節是進行追蹤時必要的資訊採集重點,被視為「關鍵追蹤活動」(Critical tracking events, CTEs),而各種「關鍵追蹤活動」的紀錄項目即為「重點資料元素」(Key data elements, KDEs)。 根據該指南所定義的CTEs包含: 1.運輸活動(Transportation events)-食品的外部追蹤,包括「運送活動」(Shipping CTE)和「接收活動」(Receiving CTE),指食品在供應鏈的點跟點之間藉由空運、陸運或船運等物理性的移動。 2.轉換活動(Transformation events)-食品的內部追蹤,連結食品經過各種結合、烹煮、包裝等加工的輸入到輸出過程,包括「轉換輸入活動」(Transformation Input CTE)和「轉換輸出活動」(Transformation Output CTE)。 3.消耗活動(Depletion events)-係將食品從供應鏈上去除的活動。其中,「消費活動」(Consumption CTE),指食品呈現可供顧客消費狀態的活動,例如把新鮮農產品放在零售店供顧客選購;「最終處置活動」(Disposal CTE)指將食品毀棄、無法再作為其他食品的成分或無法再供消費的活動。 而紀錄上述CTEs的KDEs例如各項活動的擁有人、交易對象、日期時間、地點、產品、品質等,應將該指南所列出之各項KDEs理解為紀錄CTEs的最基本項目。目前最大的問題是食品監管的要求和產業界執行可行性間的差距,故如何縮小此差距仍為各國政府當前最大的挑戰。
法國通過反盜版法案「創作與網路法」法國國會於2009年04月通過名為「創作與網路法」(Creation and Internet law)的反盜版法案,凡是非法下載遭發覺的網路使用者,執法單位將有權中斷其網路連線,若非法下載遭發覺超過兩次,執法單位得中斷其網路連線長達一年。而此次通過的新法,將取代現行非法下載者得處以最高3年以下的有期徒刑及30萬歐元罰款的規定。 此項法案受到法國當地權威音樂人士如Johnny Hallyday及Charles Aznavour等人的大力擁護,共有超過一萬名的藝術家聯署支持該項法案,支持者認為新法可望阻絕非法的影片及音樂盜版行為,法國文化部長Christine Albanel亦表示其期待新法可以解決文化商品頻遭侵害的現象。 但此項法案亦卻飽受消費團體的批評,部分反對者更直言新法不啻侵犯了公眾及個人的自由。法國消費者權益保護組織「消費者聯合會」(UFC-Que Choisir)抨擊新法是「司法怪物」(legal monstrosity),其表示網路使用者遭到中斷連線前,根本毫無機會回應執法單位的指控。另一個代表多家高科技與電子商務業者的協會,亦向政府請求在產業界提出替代解決方案前,暫緩實施該項法案。
美國科羅拉多州通過《人工智慧消費者保護法》2024年5月17日,科羅拉多州州長簽署了《人工智慧消費者保護法》(Consumer Protections for Artificial Intelligence Act,Colorado AI Act,下簡稱本法),其內容將增訂於《科羅拉多州修訂法規》(Colorado Revised Statutes,簡稱CRS)第6篇第17部分,是美國第一部廣泛對AI規範的法律,將於2026年2月1日生效。 本法旨在解決「高風險人工智慧系統」的演算法歧視(Algorithmic Discrimination)的問題 ,避免消費者權益因為演算法之偏見而受到歧視。是以,本法將高風險AI系統(High-risk Artificial Intelligence System)定義為「部署後作出關鍵決策(Consequential Decision)或在關鍵決策中起到重要作用的任何AI系統」。 而後,本法藉由要求AI系統開發者(Developers)與部署者(Deployers)遵守「透明度原則」與「禁止歧視原則」,來保護消費者免受演算法歧視。規定如下: (一)系統透明度: 1.開發者應向部署者或其他開發者提供該系統訓練所使用的資料、系統限制、預期用途、測試演算法歧視之文件以及其他風險評估文件。 2.部署者應向消費者揭露高風險人工智慧系統的預期用途,也應在高風險人工智慧系統做出決策之前向消費者提供聲明,聲明內容應該包含部署者之聯絡方式、該系統的基本介紹、部署者如何管理該系統可預見之風險等資訊。 (二)禁止歧視: 1.開發者應實施降低演算法歧視之措施,並應協助部署者理解高風險人工智慧系統。此外,開發者也應該持續測試與分析高風險人工智慧系統可能產生之演算法歧視風險。若開發者有意修改該系統,應將更新後的系統資訊更新於開發者網站,並須同步提供給部署者。 2.部署者應該實施風險管理計畫,該風險管理計畫應包含部署者用於識別、紀錄降低演算法歧視風險之措施與負責人員,且風險管理計畫應定期更新。在制定風險管理計畫時,必須參考美國商務部國家標準暨技術研究院(National Institute of Standards and Technology, NIST)的《人工智慧風險管理框架》(AI Risk Management Framework, AI RMF 2.0)與ISO/IEC 42001等風險管理文件。 美國普遍認為科羅拉多州的《人工智慧消費者保護法》為目前針對人工智慧系統最全面之監管法規,可作為其他州有關人工智慧法規的立法參考,美國各州立法情況與作法值得持續關注。
美國擬將開放中國家禽類產品之進口美國近期可能開放進口中國大陸將已處理或煮熟的家禽類產品至美國。美國農業部(The U.S. Department of Agriculture)表示中國若將處理過之家禽類產品出口至美國販售,前提是必須遵循美國相關食品進口規範完成妥當的進口申報程序,並且在中國所提出之出口健康認證(export health certificate)中,證明該家禽類產品有確實在適當的溫度等處理過程中進行妥善處理。 美國農業部食品安全及監督服務部門(Food Safety and Inspection Service, 簡稱FSIS)之相關負責官員於2014年6月初在美國國會中國事務執行委員會(Congressional-Executive Commission on China, 簡稱CECC)所舉行的聽證會(hearing)中指出,中國已經將出口健康認證提交給FSIS及動物植物健康監督服務(Animal and Plant Health Inspection Service, 簡稱APHIS)進行審核。在聽證會中,最讓美國負責官員顧慮是否通過開放中國進口家禽類產品之因素在於中國鬆懈的法律規範及其政府的貪汙問題,對於所出具的出口健康認證報告之確實性亦有待考證。美國負責的相關人員建議,中國大陸在產品製造過程的透明度是對於出口健康認證最重要的部分,能夠說服美國相信中國大陸對於食品及藥物安全在管理上的謹慎。 另外一個需要注意的地方在於食品原產地之標示(country-of-origin labeling,簡稱COOL)。在美國食品市場中,若食品大部分的成分來源是在美國境內處理的,則該食品會有「美國產品」(product of U.S.A.)之標示,但對於何謂「美國境內處理的食物」仍沒有明確的標準,對於國外進口美國的產品,在美國經過重新包裝或加工,則依據COOL相關規範,應標示該產品為「美國產品」。因此,在此條件下,若美國允許中國進口經過中國當局出口健康認證的家禽類產品,若進口至美國後,又在美國境內經過重新加工或是包裝,則該食品之COOL將會顯示該食品來自美國,而非出產自中國大陸。這樣的結果恐將會讓美國食品標示出現不完全精確之結果,也會讓消費者開始顧慮其購買的食品來源的顧慮及食品安全的可信度,美國將必須對進口食品的安全管控上建立更嚴謹的規範措施。