三菱電機informationsystems公司所研發用於圖書館的系統封包MELIL/CS造成引進系統的圖書館發生個人資訊外洩與Web館藏檢索系統當機的系統障礙。從2010年7月到9月因系統障礙,總共有3間圖書館,共2971人的姓名、出生日期、住址、電話及圖書名稱等個人資料外洩。 有關個人資料外洩的經過,是因為三菱電機informationsystems公司在研發MELIL/CS系統時,先在引進系統的圖書館進行系統測試,於測試之後再將系統程式帶回公司修改,此時就不知情的將存有個人資料的程式帶回公司,也把這些資料登錄到產品的原始碼上。因此將進行測試的2間圖書館使用人約210人的個人資料登錄於該產品的原始碼上。 但發生個資外洩的直接原因更在於負責三菱電機informationsystems公司產品運作、維修的銷售伙伴千代田興產公司,該公司所設置的伺服器完全沒有設定權限區分,甚至不需密碼就可以連接該公司伺服器存取資料。因此發生第三人進入該公司伺服器,下載3個引進該系統圖書館約3000人的個人資料。 另外對於Web館藏檢索系統當機的發生,是因為圖書館使用人為了獲取圖書館新增加館藏圖書的資訊,以自動蒐集資訊程式直接存取館藏資料庫所發生。三菱電機informationsystems公司當初在設定網路連接圖書館系統,是以一次存取可以連接10分鐘的方式,所以只要以連接頻率高的機械性存取,只要超過資料庫的同時連接數的設定數值,就會發生存取障礙。 對於三菱電機informationsystems公司系統設計失當及千代田興產公司未設定伺服器存取權限所造成個人資料外洩事件,因為這兩家公司都是屬於財團法人日本情報處理開發協會(JIPDEC)的取得隱私標章企業,所以由JIPDEC依據隱私標章營運要領中的「有關賦予隱私標章規約」第14條規定,各處以由2011年1月起3個月的隱私標章停權處分。
美國國會通過700MHz D區段頻譜之規範為實施公共安全網路計畫,美國國會在2012年二月通過「2012年中產階級稅收減免及創造就業法案」(Middle Class Tax Relief and Job Creation Act of 2012),將700MHz頻段中既有存在之公共安全寬帶頻譜(763-769 MHz/793-799 MHz)與相鄰的D block的頻段(758-763MHz與788-793MHz)規劃成 「互通公共安全寬頻網路」(interopertable public safety broadband network),進行頻譜拍賣。 雖FCC經本法案授權執行D Block頻段的拍賣,但也限縮其職權規定FCC不得限制任何特定業者參與競標。針對FCC職權受到限制,業者認為可避免FCC在拍賣期間逕自訂定特別規則之情形。但法案仍保留FCC執行「普遍適用性的規定」(rules of general applicability)之權利,以頻譜聚合(spectrum aggregation)的規定促進市場競爭。對此,主導業者擔心FCC可能藉採取「頻譜上限」 (spectrum cap)的管制手段來限制其獲得大量頻譜的機會。 另外,面對全國性公共安全寬頻網路部署之需要,國會將授權行政部門建立「緊急救難管理局」(First Network Authority, FirstNet)來進行整體網路之開發規劃。在FirstNet尚未成立之前,FCC將暫時承擔此一過渡期間管理全國公共安全寬頻網路之責任。但FirstNet在未來是否能依照國會所期待順利掌管整體公共安全寬頻網路之運作,並達成建構一跨機關、部會以及區域的無縫互通寬頻網路平台(a nationwide interoperable public safety broadband network)之期望,FCC認為該局所任命之委員會委員所具備之專業度,以及各聯邦機構是否充分的支持將是成功之關鍵。
「自動駕駛車(self-driving car)」可否合法上路?「自動駕駛車(self-driving car)」一般而言係指於汽車安裝感測器(sensors)以及軟體以偵測行人、腳踏車騎士以及其他動力交通工具,透過控制系統將感測到的資料轉換成導航道路,並以安全適當的方式行駛。其目前可分為兩類:「全自動駕駛車(full autonomous)」以及「半自動駕駛車(fully autonomous)」,全自動駕駛車係指可於指定地點出發後不需駕駛人(driver)在車上而到達目的地者之謂。全自動駕駛車又可為「用戶操作(user-operated)」與「無人駕駛車(driverless car)」。 目前包含賓士(Mercedes)、BMW、特斯拉(Tesla)等公司均預期於不久將來會發布一些具備自動駕駛特徵的車種,科技公司如Google亦對於自動駕駛車的科技研發不留餘力。 而從2012年開始,美國有17州以及哥倫比亞特區便開始在討論允許自動駕駛車上路的相關法規,而只有加利福尼亞州(California)、佛羅里達州(Florida)、內達華州(Nevada)及華盛頓哥倫比亞特區(Washington, D.C.)有相關法律的施行,其他州則尚未表態。而大部分的州傾向認為應由人類來操控(operating)汽車,但對於具體上到底有多少比例之汽車任務需由人類操控而多少比例可交由機器則尚有模糊空間。而是否肯認「人工智慧操控」符合法規之「人類操控」亦不明朗。不過在法律存有這樣灰色地帶時刻,Google搶先於加利福尼亞州進行測試其自動控制系統,期望之後於自動駕駛車逐漸上市普及後能搶占商機。
金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。