台灣自由軟體今年產值逾12億

  MIC資料顯示,台灣自由軟體產業軟硬體的相關產值從2003年的135億,至今年可望成長至新台幣290億。如果單看自由軟體的產值,今年可望超過新台幣12億,較去年成長26%。


  資策會表示,在政策推動下,自由軟體的需求面有逐漸增加的趨勢。就市場整體來看,我國自由軟體產業的產值,今年上半年達到新台幣59000萬,全年將超過12億,達到123700萬,而從2002年至2006年,台灣自由軟體產業軟體產值的年複合成長率高達55%。


  預期到2007年,自由軟體產值可望達新台幣100億元,投入軟體開發廠商將達50%,而政府單位的個人電腦使用比例可望達到10

本文為「經濟部產業技術司科技專案成果」

※ 台灣自由軟體今年產值逾12億, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=520&no=67&tp=1 (最後瀏覽日:2025/04/04)
引註此篇文章
你可能還會想看
印度政府對新創事業之補貼 – 專利權聚焦。

  印度政府近年來聚焦新創創業發展,其成果更是驚人,根據一份研究報告,印度的科技產品相關新創事業光是在2016年就已達4700家以上,在當年排名全球第三,僅次於美國與英國,且預計在2020年會有2.2倍左右成長率,亦即數量翻倍。1 現今印度政府共計有超過50個新創事業獎勵補助等機制,分別由不同部門與單位執行,2 以下針對新創事業專利權補助之三大機制作介紹。   電子與資訊部門(Department of Electronics and Information Technology)、科學與工程研究委員會(Science and Engineering Research Board),以及生物科技產業研究輔助委員會(Biotechnology Industry Research Assistance Council),為三大對新創事業專利權之申請與握有,提供相關補助之印度政府部門。 (1) 電子與資訊部門之機制主要適用於人工智慧、資訊科技與軟體等產業,符合機制的新創業者申請國際專利權時,印度政府會提供15萬盧比(相當70萬台幣)或是總花費50%的補貼,補助金額看似多,但該機制有產業限制,且只施行至2019年11月30日。 (2) 科學與工程研究委員會之新創機制亦是對於專利申請有金錢上之補貼,特色在於適用產業十分廣泛,舉如化學、硬體、醫療、農業、航空、通訊、建築、能源等產業皆在機制內,重點要件在於新創業者需是已進入概念驗證(proof of concept)之階段,再者,該新創機制沒有施行期限。 (3) 生物科技產業研究輔助委員會之創新機制沒有適用產業與期限的限制,但適用對象確有限制,只限印度公民與成功展現概念驗證之創新者,該機制特色在於:補貼是對於符合標準的整個專案計畫,非只對於專利權。金額大約是20萬至500萬盧幣(約台幣10萬至200萬),或是整個專案計畫50%-90%花費。   印度政府對於新創業者之專利權相關補助共有三個機制可以選擇,優點在於新創業者可以依自己的展業別、發展階段、預算及相關因素自行選擇最有利的機制,以達到獲取補助最高的成功率。單一新創補助機制過於硬性,多數方案則可以提供選擇性與彈性。台灣就新創事業多提供貸款融資服務、資金補助計畫、或稅務減免等政策,尚未針對新創事業專利權做特定之政策優惠,或許台灣能在印度此三大專利權補助機制有可學之處。

美國資訊安全分析新挑戰:巨量資料(Big Data)之應用

  在2013年的國際資訊安全會議(RSA Conference)上,資安專家紛紛表示,將Big Data技術應用於資訊安全分析的項目上,確實可以幫助企業建立更佳的情勢判斷能力,但在實際執行過程中是一大挑戰。   資安廠商如RSA和賽門鐵克公司,在會議上表示目前的策略是透過新的數據匯集、比對和分析協助企業篩選、過濾結構化和未結構化資料的威脅指標,這是傳統的特徵偵測(signature-based)安全工具無法做到的。   不像傳統的安全手段著重於阻斷攻擊,新的技術強調偵測並立即回應違犯行為,也就是提前遏止任何違犯行為,協助企業作全面性的偵測而不擔心有所遺漏。   由於越來越多的美國政府機關和民間企業遭受到針對性和持續性的攻擊,巨量資料技術的應用需求激增。企業內部都累積著大量的數據和多元的數據種類,而需要動新技術來保護這些數據資料免於惡意人士或對手的竊取或其他侵害行為。企業應該要因應實際面臨的威脅和所獲悉的威脅情報來建立安全模型,取代部署特定產品和外圍系統的防禦。   美國無論是政府機關或民間企業都被捲入了不對稱戰爭-對手是武器精良、準備充分並有嚴密組織的網路敵人。   「駭客只需要攻擊成功一次,但我們必須每次都是成功的」賽門鐵克的總裁deSouza表示。「因此與其專注的在阻擋所有威脅,更好的辦法是使用巨量資料技術偵測侵入行為並消解之」。而在會議中資安專家都肯認至少從理論上來說,以巨量資料技術強化資訊安全是很好的想法。   不過另有其他的說法,金融服務企業LSQ的首席安全及法務主管皮爾遜認為,許多人的電腦紀錄檔和所有的電子裝置都早就被侵入滲透了,這才是問題所在。他表示,目前現存的SIEM(安全性資訊及事件管理)工具可以讓企業聚集來自許多個安全設備的巨量登錄數據整合在同一系統內,但真正的問題是,SIEM工具必須要有能力分析數據並找出關聯性,如此才能偵測到駭客入侵的前兆證據和真實的入侵行為,這和彙整數據是不同的兩件事。許多企業所面臨的問題不是缺乏數據資料,而是要如何為資訊安全的目的建立關聯規則和應用方式,以有效率的方式找出有用的巨量數據並進行分析,和留下可供進行訴訟使用的證據。

英國建立幹細胞研究網絡

  英國財政大臣十六日在倫敦宣佈,政府將在其10年發展計劃中建立一個全國性的幹細胞研究網路,以鞏固英國在該領域的領先地位。   英國工黨政府一直對幹細胞研究提供支持,並且率先立法,允許治療性人類胚胎幹細胞研究。但是治療性胚胎幹細胞研究一直遭到人權組織的反對,使幹細胞研究機構在資金籌措方面陷入困境。為此,英國政府作出建立幹細胞研究網路的決定,無疑是為了加強英國在國際幹細胞研究領域的領先地位。   布朗當天在下議院宣佈二○○五年財政年度預算計劃時說,英國政府從二○○二年起的三年內向幹細胞研究撥款四千萬英鎊,另外,英國醫學慈善機構韋爾科姆信託公司承諾向幹細胞研究網路投資二千萬英鎊。

全美各州醫療委員會聯合會發布人工智慧(AI)治理指引,並要求醫師為AI之利用結果負最終責任

全美各州醫療委員會聯合會(The Federation of State Medical Boards, FSMB)於2024年4月發布「引導人工智慧以負責任與符合倫理方式融入臨床實務」(Navigating the Responsible and Ethical Incorporation of Artificial Intelligence into Clinical Practice)指引,明確概述醫師於利用AI協助提供照護時可採取之步驟,以履行其倫理與專業職責,期能藉此降低對患者造成傷害之風險;本指引之特色在於,其要求醫師為AI之利用結果負最終之責任。 FSMB 向各州醫療委員會與其他利害關係人所提供之原則與建議如下,以支持對包含AI之臨床照護進行負責任與符合倫理之監管: (1)透明度與揭露(Transparency and Disclosure): 應要求維持於醫療照護領域使用AI之透明度;各州醫療委員會應制定明確之指導方針,向患者揭露AI之使用情況,其有助於患者與醫師之理解,但不會造成不必要之行政負擔;FSMB 應制定文件,詳細說明最常用之AI工具之功能與局限性,以協助醫療委員會發揮監管者之角色,並應制定常見問題與最佳實務文件,作為提供照護時利用AI方面關於透明度之資源。 (2)教育與理解(Education and Understanding): FSMB及其於醫學教育界之合作夥伴,應為醫師、醫療委員會與患者,確認有關醫療照護中AI之結構化教育資源,該等資源應包括協助瞭解AI如何運作、其優點、潛在風險以及對患者照護之影響。 (3)負責任之使用與問責(Responsible Use and Accountability): 開發人員應協助醫師瞭解何時、以及如何於患者之照護中利用AI工具;選擇AI工具支援臨床決策之醫院系統、保險公司或其他機構應向醫師提供有關AI工具之教育、存取各工具之性能報告,並應設計一個定期檢視工具功效的流程;AI工具應以得使各州醫療委員會能稽核與理解之方式設計,以便適當評估依賴工具輸出結果之醫師是否偏離照護標準(standard of care);FSMB 應支持各州醫療委員會針對臨床醫師如何負責任、可問責地使用AI之解釋。 (4)公平性與近用(Equity and Access): 應努力確保所有患者皆能公平地近用AI帶來之好處;FSMB與各州醫療委員會致力於以下原則:醫療人員所提供之照護是公平的、且不受基於種族、民族或其他形式歧視之偏見影響;FSMB應與其他利害關係人一起理解並解決演算法偏差問題。 (5)隱私與資料安全(Privacy and Data Security): AI工具之開發者必須實施嚴格之保護措施,以保護AI開發與評估時所利用之患者資料,通常情況下應告知患者資料如何被利用,且FSMB應與行業利害相關人一起制定AI系統使用與散布患者資料之政策,包括針對AI開發或評估中使用之患者資料之最低資料保護措施。 (6)監督與監管(Oversight and Regulation): 各州醫療委員會必須保留對於提供醫療服務時,不當應用AI工具之醫生進行紀律處分之權力,其包括問責議題之考慮,特別是當AI系統變得更加自主時;各州醫療委員會應審查其管轄範圍內如何對「醫療行為」(practice of medicine)進行法律定義,以確保對提供醫療照護、人力或其他方面進行持續之監管監督。 (7)法律法規之持續審查與調整(Continual Review and Adaptation of Law and Regulations): 各州醫療委員會應在FSMB之支持下,隨著AI之不斷發展,持續檢視與更新與AI相關之指引與法規;政策制定者應考慮AI對基本法律原則的影響,例如醫療行為之定義以及AI對企業醫學實務之影響;FSMB 應建立一個專門團隊,持續檢視與調整AI指引與法規。 本指引指出,AI工具通常無能力取代醫師之專業判斷、道德責任或對州醫療委員會之責任,醫療行為中之關鍵職業責任始終為確保診斷、臨床決策與建議不存在偏差。與用於診斷或治療疾病之任何其他工具或鑑別方法相同,醫療專業人員有責任確保基於證據結論之準確性與真實性,因此於將AI系統用於患者照護前,醫師應以合理努力識別與解決偏差(如虛假或不準確之資訊等)。

TOP