開放原始碼協會(Open Source Initiative,簡稱OSI)的新任總裁Russ Nelson在
在寄給開放原始碼社群的一份聲明裡,Nelson表示,新的條款規定:授權不可與既有的授權重覆;必需以清楚、簡單,而容易了解的方式撰寫;以及把個人、專案或組織的名稱通通移至隨附的附件中,以便讓授權書可重複使用。
Nelson在接受專訪時表示,新條款要由OSI董事會通過才可生效。董事會成員已經過過該提案,但還未安排好投票的議程。OSI並不打算取消已經通過的授權認證,Nelson表示。他認為,推出「OSI Gold」升級認證應該可達到同樣的效果。他進一步表示,新的條款是否能夠有效減少授權數量,還要看執行是否有力。
本文為「經濟部產業技術司科技專案成果」
3D列印設計分享網站Shapeways在週五收到從任天堂神奇寶貝國際公司一個停止侵權的函(cease and desist),是有關於藝術家Claudia Ng的類似神奇寶貝妙娃種子的陶瓷園藝盆設計,他將園藝盆在Shapeways網站上販售,但Shapeways在收到警告信函後移除了網站上的產品列表。 根據Claudia Ng所述,任天堂神奇寶貝國際公司是要求所有有關此模型相關的收益。原本產品列表上並未直接將神奇寶貝遊戲名稱用於此盆栽設計名稱,Claudia Ng標註牠是植物怪獸(succulent monster),但產品列表中數次提及了神奇寶貝公司。最新版的設計將近2.5英吋(6.5公分)高,售價為49美元,目前有多種顏色提供銷售。 Claudia Ng表示:我想這是落於衍生和轉化著作的範疇,我並非一個律師,但我猜測這至少是最廣義的相關法規解釋裡。發生這件事我並不意外,只不過我原本預期該公司會追蹤的是那些有更多侵權設計的人。雖然我承認我個人喜愛的神奇寶貝啟發了我的靈感,但不是神奇寶貝的粉絲也都會喜歡這設計的原因就在於神奇寶貝本身的動物本質(generic-ness)。大多數都公認牠像一隻肥貓。而且我也被要求去設計其他的動物或生物。 Claudia Ng可能會被安排和任天堂神奇寶貝國際公司接觸,雖然他無法確定從這場可能的會議中會發生甚麼事。 3D列印設計分享上有可能設計的產品會侵害他人權利,設計者在靈感啟發上到設計成品時皆須有避免侵權的考量,以免不只無法獲利也有侵權的風險。
亞利桑那州可望通過情色報復法,美國防治情色報復將再添一州美國亞利桑那州曾於2014年通過違反本人意願散布隱私內容之條文(泛稱為情色報復法Revenge Porn Law),構成要件未涵蓋行為人需有傷害的主觀不法構成要件,只要未經本人同意散布隱私內容即有可能觸犯本法而被判重罪(Felony),最高將可處三年又九個月之有期徒刑。然而,因構成要件過於廣泛,甚至未排除具新聞、藝術、教育價值之內容,未考慮本人之隱私期待性和傷害有無,美國公民自由聯盟遂代表出版業、媒體業和攝影業等,以該條文侵害言論自由有違憲之虞,於同年9月向亞利桑那州提告。該案於2015年7月10日達成和解,亞利桑那州地方法院宣告該條文將不會生效施行。 在經過漫長的修法後,亞利桑那州參議院最終於2016年3月7日無異議通過情色報復法之最新修法法案(House Bill 2001),待州長簽署核准後便立即生效施行。本次修法與2014年的版本不同處為,檢察官需證明隱私內容之本人具有合理的隱私期待,若被害人曾將自拍的影像寄送與他人,更需證明被害人未有分享的意思。此外,檢察官需證明行為人具有意圖傷害、騷擾、威脅或迫使他人之主觀意思。在此條文尚未通過前,實務上已有檢察官多次反應現行法無從對違反本人意願散布隱私內容之行為論罪,至多僅能以網路跟蹤或霸凌法等追究,對受害人保護甚為不周。
營業秘密與競業禁止-簡評臺灣高等法院台南分院102年度上易字第212號判決 新加坡科技與研究局針對未來工廠提出研究規劃及方向新加坡科技與研究局(Agency for Science, Technology and Research)於2017年7月26日提出未來工廠(Toward the factories of the future)概念及相關研究方向,自動化(Automation)、機器人(robotics)、先進電腦輔助設計(advanced computer-aided design)、感測和診斷技術(sensing and diagnostic technologies)將徹底改變現代工廠,可製造的產品範圍廣泛,從微型車乃至於飛機皆可生產。積層製造(Additive Manufacturing),又稱3D列印(3D printing),可使用單一的高科技生產線來創造許多不同的產品項目,而不需要傳統大規模生產的設計限制和成本,伴隨未來高效能電腦和感測技術之進步,積層製造速度也會隨之加快。而智慧工廠(smart factories)將與物聯網(IOT)、雲端計算(cloud computing)、先進機器人(advanced robotics)、即時分析(real-time analytics)與機器學習(machine learning)等技術與積層製造技術結合,將大為提升生產速度及產量。 為加速及改善積層製造的製程,最重要的方法之一,是使用材料物理學的基本原理來模擬製造過程,而近期更引進跨學科之研究,「模擬」最終產品化學成分和機械性能的微觀結構。因積層製造是一個複雜又困難的過程,透過變化既有規則之模擬(Game-Changing simulations),若建立完成模型且模擬成功,將成為積層製造的殺手級技術。在未來的五到十年,我們將看到更多的零件從積層製造技術生產出來,而且這種技術有機會成為未來工廠的生產基礎。由於現行材料及製造流程與機器必須配合一致,些許的差異皆會生產出不同品質之產品,故未來積層製造工廠的結果穩定重現性(repeatability)和標準化(standardization),將是產品商業化的主要障礙與挑戰。