自由軟體運動燒向BIOS

  BIOS是「基本輸出/輸入系統」(Basic input/output systems)的簡稱,這種在所有應用底層的軟體,過去以來PC廠商一向自我保護相當嚴密,而且還需要用到專門設計BIOS的公司。而現在,一些批評開始希望逼迫業界放棄其機密,這些批評宣稱,客戶應該可以自由發開自己的選擇方案,確保可以控制自己的裝置──也就是說,可以讓他們自由取得BIOS資訊。 


  「我們需要自由的BIOS,因為如果我們無法控制BIOS,就無法控制電腦。」自由軟體基金會(Free Software Foundation)總裁Richard Stallman表示。BIOS自由軟體計畫開始於BIOS史上的第一波改革──當時軟體程式碼希望轉向新的「可延伸式韌體界面」(Extensible Firmware Interface,或簡稱EFI)。另一方面,PC硬體安全功能的一些計畫也讓Stallman等一類團體批評指出,消費者對於自己的裝置缺乏主控權,希望能夠公開BIOS撰寫規格,可讓消費者能夠自行安裝、修改,及再發佈BIOS軟體──雖然不見得會是免費的。更重要的是,將可讓使用者避開未來一些可能的安全強化功能,例如廠商用控制文件使用方式的數位版權管理功能。


  已有許多廠商宣稱,BIOS的自由軟體純粹只是為了自由而自由,對於電腦使用者沒什麼意義。BIOS廠商的高層及晶片巨子英特爾都表示,由於目前業界對BIOS的控管嚴密,也才能夠保有PC的安全和穩定,同時可藉由對一些廠商IP(智慧財產權)的保護以促進市場競爭。有些人則認為,對於BIOS的嚴密保護,有助於防止駭客攻擊。


  英特爾則已經提出了折衷的方案──名為Tiano的開放原始碼技術。Tiano是為了取代BIOS的一種框架工作,希望透過EFI,讓PC零件以自己的驅動程式來啟動零件。英特爾的這項計畫為BIOS的汰換工作建立了一個框架,因此可能成為BIOS自由軟體的基礎。但是它把PC零件初始化用的程式碼撰寫工作留給了軟體的下載者。但Stallman依然宣稱英特爾做得不夠,且BIOS廠商其實是多餘的,他希望看到資訊釋出。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 自由軟體運動燒向BIOS, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=526&no=0&tp=1 (最後瀏覽日:2026/02/15)
引註此篇文章
你可能還會想看
日本知名連鎖旋轉壽司發生營業秘密外洩爭議,顯示企業建立及持續推動內部機密資訊管理制度之重要性

  東京地方檢察廳於2022年10月21日以違反《不正競爭防止法》等為理由,起訴被告「かっぱ寿司」之營運公司「カッパ・クリエイト」公司(下稱Kappa壽司)及其前社長田辺公己(下稱田辺)等。因本案牽涉上市企業的前社長,故引起日本社會極大關注,東京地方法院已於2022年12月22日召開首次審理庭。   本案被告田辺在1998年加入「はま寿司(下稱Hama壽司)」之母公司,並於2014年到2017年間擔任Hama壽司董事;嗣後在2020年11月時,轉職至Kappa壽司。雖然田辺在離職時已簽署保密協議,但在離職前後數月間,持續透過不正當方式,取得Hama壽司之食材成本及其供應商等資訊,同時更指示仍任職於Kappa壽司之部屬製作Kappa壽司與Hama壽司之成本對照表,並以郵件方式提供被告,被告再於Kappa壽司內部使用。   雖然Kappa壽司嗣後發表公開聲明,強調並無跡象顯示該公司曾依據相關成本對照表,進行開發新產品或更換批發商等措施,但田辺在審理庭上,已承認指控,而且在被捕時,曾坦言行為動機為希望提高業績。   對於本案,有日本輿論指出海外因應人員轉職較頻繁,對於機密資訊之管理,通常訂有較嚴格的規定,惟日本目前欠缺相關觀念;亦有論者認為因為必須符合營業秘密之法定要件,始受《不正競爭防止法》之保護,故強調機密管理對於保護商業秘密及針對機密外洩之法律救濟的重要性。從本案觀之,任何產業類型的企業都可能會有屬於營業秘密的資訊,為維護企業的商業競爭力,避免因營業秘密外洩影響公司營運,企業應建立及持續推動內部機密資訊管理制度,並因應社會與管理環境變化等,精進管理模式。同時應定期進行教育訓練,提高人員的機密保護意識,強化營業秘密外洩事件發生時的舉證,以有效的主張權利。   本文同步刊登於TIPS網站(https://www.tips.org.tw)

能源清醒!歐洲競爭電信協會主張應重新討論網路建設的付出與碳排放影響的歸責

  「能源清醒」(Energy Sobriety)作為一種概念逐漸被普及到政策和法令之中。目的在於使各種使用者對於自身行為所產生的碳排放有所警醒、並且就其行為所產生的碳排放負起責任,進而在產品、設備的選擇和使用習慣上重新進行考慮。藉由選擇減少消費、或是更改消費模式來更好的保護地球資源、減少碳排放。能源清醒的概念和能源效率的概念不同,他透過社會文化的改變來達到能源節省的目的、而不是仰賴技術的革新。   基於此一概念,歐洲競爭電信協會(European Competitive Telecommunications Association)於2022年9月發表對於網路基礎建設投資的聲明,希望能就對於網路建設的付出是否公平展開討論。   該協會表示,雖然其身為電子通信業者的成員們在歐洲綠色政綱(European Green Deal)上有所投入、致力於減少環境足跡,但是網路流量的穩定增加卻限制了電子通信業者對於減少溫室氣體排放的努力。而這種現象在行動網路(mobile network)的使用上特別明顯。因為將高品質(如4K、8K或HDR)的影像傳輸到行動裝置或小尺寸螢幕設備上對於用戶體驗的提升並沒有實際上的幫助,但是卻會使得網路頻寬(bandwidth)被大量消耗以及大量的溫室氣體在過程中被排放。這使得營運商將網路規模擴大(更多的核心網路和RAN設備、更多的設備和地點),因此有了更高的耗能,對於環境的影響也更加劇烈。對此,協會提議透過監管方式來改善這種情形,認為應要求內容供應商應採取非歧視性的、與內容無關的方式使影音解析度適應螢幕尺寸的解決方案,從而減少不必要的網路流量和浪費,並且給予其適度的獎勵措施。   該協會認為,任何符合能源清醒的模式都應該受到數位生態圈的集體鼓勵。而其中的每個參與者也應該要注意和承認自己的行為所產生的影響,並作為一個能源使用者和造成碳排放的實際個體負起責任。對此,歐洲競爭電信協會已經準備好就此提議進行討論與辯論。

日本委託研究開發之智慧財產治理運用指引

  委託研究開發之智慧財產治理運用指引(委託研究開発における知的財産マネジメントに関する運用ガイドライン,以下簡稱委託研發智財運用指引)為日本經濟產業省制定並於2015年5月15日公布,用於規範該省、或該省所轄獨立行政法人委外執行技術研發計畫而產出的各項智慧財產權之管理運用事宜。   日本於產業技術力強化法第19條納入拜杜法(Bayh-Dole Act)的意旨,建立了政府資助研發所生的智財權成果歸屬受託單位的原則,但同時為促進研發成果的第三人商業化利用,落實國家資助技術研發成果獲得充分運用以達成國家財富最大化的政策方針,因而作成該指引。   委託研發智財運用指引以委託機關和受託單位為規範對象,首先揭示了研發成果商業化利用的重要性,並以此為核心思維,賦予委託機關須就個別委外研發計畫,在計畫開始前訂定計畫智財權管理方針,並向潛在計畫參加者提示的義務,同時,委託機關須確保委託契約中包含智財權等成果管理運用之約款,例如針對成果有無適用日本拜杜法規定、受託單位承諾在相當期間內未妥善運用成果時開放第三人利用等;另一方面,受託單位則有義務就計畫設置智財營運委員會,負責在計畫執行期間處理智財權管理事宜。

美國OMB發布人工智慧應用監管指南備忘錄草案

  美國行政管理預算局(United States Office of Management and Budget, OMB)於2020年1月發布「人工智慧應用監管指南(Guidance for Regulation of Artificial Intelligence Applications)」備忘錄草案。該備忘錄草案係基於維護美國人工智慧(AI)領導地位之目的,而依據美國總統川普(Donald John Trump)於2019年2月簽署之「維持美國人工智慧領導地位(Maintaining American Leadership in Artificial Intelligence)─行政命令13859號」,並在啟動美國人工智慧計畫後180天內,經OMB偕同科技政策辦公室(Office of Science and Technology Policy, OSTP)、美國國內政策委員會(United States Domestic Policy Council)與美國國家經濟委員會(National Economic Council)與其他相關機構進行協商,最後再由OMB發布人工智慧應用監管指南備忘錄草案,以徵詢公眾意見。   該備忘錄草案不僅是為了規範新型態AI應用技術,更希望相關的聯邦機構,在制定AI應用產業授權技術、監管與非監管方法上,能採取彈性的制定方向,以避免過度嚴苛的規定,反而阻礙AI應用的創新與科技發展,繼而保護公民自由、隱私權、基本權與自治權等價值。同時,為兼顧AI創新與政策之平衡,應以十大管理原則為規範制定之依據,十大管理原則分別為: 培養AI公眾信任(Public Trust in AI); 公眾參與(Public Participation); 科學研究倫理與資訊品質(Scientific Integrity and Information Quality); AI風險評估與管理(Risk Assessment and Management); 獲益與成本原則(Benefits and Costs); 彈性原則(Flexibility); 公平與反歧視(Fairness and Non-Discrimination); AI應用之揭露與透明化(Disclosure and Transparency); AI系統防護與措施安全性(Safety and Security); 機構間之相互協調(Interagency Coordination)。   此外,為減少AI應用之阻礙,機構制定AI規則時,應採取降低AI技術障礙的方法,例如透過聯邦資料與模型方法來發展AI研發(Federal Data and Models for AI R&D)、公眾溝通(Communication to the Public)、自發性共識標準(Voluntary Consensus Standards)之制定及符合性評鑑(Conformity Assessment)活動,或國際監管合作(International Regulatory Cooperation)等,以創造一個接納並利於AI運作的環境。

TOP