英政府推動開源碼計劃

  由英國政府所資助成立的一項計畫,希望透過開放原始碼廠商目錄及程式碼資料庫的建立等措施,加速公家單位對開放原始碼軟體的採用。這項名為「開放原始碼學院」( Open Source Academy )的計畫,是由副首相辦公室( Office of the Deputy Prime Minister )的電子創新投資計畫所贊助,預計在本月內將正式宣佈。


  參與該計畫的開放原始碼協會( Open Source Consortium )執行總監表示,英國的公家機關在開放原始碼的採用上落後於歐洲各國,而這項計畫將改變目前的現況。地方政府已經可以透過網站開始分享程式碼,例如「地方政府軟體協會」( Local Authority Software Consortium )的網站。這項計畫裡的其他專案還包括了政府機構的入口網站計畫,可藉以尋找開放原始碼供應商的資訊;以及開放原始碼顧問的專業鑑定模式。

本文為「經濟部產業技術司科技專案成果」

※ 英政府推動開源碼計劃, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=527&no=67&tp=1 (最後瀏覽日:2026/01/13)
引註此篇文章
你可能還會想看
2022年日本公布平台資料處理規則實務指引1.0版

  日本數位廳(デジタル庁)與內閣府智慧財產戰略推進事務局(内閣府知的財産戦略推進事務局)於2022年3月4日公布「平台資料處理規則實務指引1.0版」(プラットフォームにおけるデータ取扱いルールの実装ガイダンス ver1.0,簡稱本指引)。建構整合資料提供服務的平台,將可活用各種資料,並創造新價值(如提供個人化的進階服務、分析衡量政策效果等),為使平台充分發揮功能,本指引提出平台實施資料處理規則的六大步驟: 識別資料應用價值創造流程與確認平台角色:掌握從產生資料,到分析資料創造使用價值,再進一步提供解決方案的資料應用價值創造流程,以確認平台在此流程中扮演的角色。 識別風險:掌握利害關係人(如資料提供者與使用者等)顧慮的風險(如資料未妥適處理、遭到目的外使用等疑慮)。 決定風險應對方針:針對掌握的風險,決定規避、降低、轉嫁與包容等應對方針。 設定平台資料處理政策與對利害關係人說明之責任(アカウンタビリティ):考量資料處理政策定位,擬定內容,並向利害關係人進行說明。 設計平台使用條款:依據「PDCA循環」重複執行規則設計、運作與評估,設計平台使用條款。 持續進行環境分析與更新規則:持續分析內部與外部因素可能面臨的新風險,並更新平台資料處理規則。

RFID應用發展與相關法制座談會紀實

澳洲法院正審理乳癌或卵巢癌基因檢測產品可專利性訴訟

  BRCA1與BRCA2乃兩個已經被確認的基因,係用來檢測婦女是否容易罹患乳癌或卵巢癌的重要基因。在澳洲這個檢測產品是由基因技術有限公司(Genetic Technologies Limited, 以下簡稱GTL)所擁有。因檢測費用高達3,700元美金且無法有其他的檢測選擇,形成獨占。   今(2010)年3月,美國紐約聯邦地方法院(United States District Court Southern District of New York)認為BRCA1與BRCA2等人類基因乃如同血液、空氣或水的結構,屬於自然的產物,不具有可專利性,系爭專利阻礙了乳癌與卵巢癌相關研究與創新,並限制檢測的選擇性,因而作出BRCA1與BRCA2基因不具可專利性之判決。   受到美國判決之影響,今(2010)年6月澳洲的癌症之聲消費者團體(Cancer Voices),及一名患有乳癌的婦女同向雪梨聯邦法院(Australian Federal Court in Sydney)提起訴訟,希望免除GTL對於檢測乳癌與卵巢癌產品的獨占權利。主要理由包括,對人類的一部分(基因)給予專利,不但阻礙了後續研究,也會阻礙乳癌與卵巢癌治療方法的研發,更提高許多病患接受此檢測的障礙。固然專利權人得維持高檢測費用,但有別於傳統工程或技術上的專利,生物技術專利也含有高度追求人類健康之公共利益,因此握有生物技術專利者,實不應利用獨占地位阻礙的人類健康的維持與追求,阻礙醫療或治療方式的研究。   過去澳洲專利局認為自自然產物分離的基因或物質是具有可專利性的,此案若勝訴,澳洲專利局將調整原先承認自自然產物分離的基因或物質,具可專利性之見解,所以該案的後續發展值得我們關注。

英國發布人工智慧網路資安實務守則

英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。

TOP