歐盟執委會主席Barroso在今年年初設立了負責「正義、基本權與公民」(Justice Fundamental Right and Citizenship)事務的新任務單位。而負責此單位的執委會委員Reding自年初以來已多次宣示對個人資料保護以及隱私權的重視。在今年三月份的演講中,Reding更宣布將在年底前提出修正歐盟個人資料保護指令的內容。惟此承諾在歐盟會員國的壓力下恐怕無法踐履了。歐盟執委會於日前已表示將提出一份新的行動宣示來取代原先的修法計畫。
歐盟目前的個人資料保護指令乃在1995年制定,迄今已有15年之久,雖然其許多原則在今日仍然適用,但面對新科技、新應用,如社交網站、雲端應用等的發展,該指令仍不免顯出不足之處。此外,在原先的架構下,執委會也無法介入所謂歐盟「第三支柱」下的事務(亦即與犯罪相關的警政、司法合作事務),但此狀況在里斯本條約通過後理應有所改變。以上兩點也正是Reding提議修正個人資料保護指令的理由。但由於部分歐盟會員國政府認為Reding所提有窒礙難行之處,例如法國即直言Reding的修法時程不切實際,執委會及Reding也因此放棄原先規劃。至於新的行動宣示到底會不會真的納入歐盟個人資料保護指令的修正計畫,其時程與內容如何,值得持續注意。
歐洲議會於2022年6月22日表決通過碳邊境調整機制(Carbon Border Adjustment Mechanism, CBAM)草案之議會版本,為該次決議通過三項草案中之一項,而包含CBAM在內之三者皆屬歐盟去年7月所公布「Fit for 55」溫室氣體減量包裹法案中的一部份,正式施行後將要求進口商向歐盟購買「CBAM憑證」,繳交進口產品對應之碳排放量費用,希望促進非歐盟國家減少碳排放以及防止碳洩漏(carbon leakage)的風險,並避免氣候政策不積極國家的企業擁有不公平優勢,以進一步降低全球碳排放。而在此次議會通過之版本中,有幾點作了調整: (1)擴大管制範圍:在產品方面,除原先歐盟執委會所提出之水泥、鋼鐵、鋁、肥料及電力等5大類產品外,歐洲議會亦希望納入有機化學品、塑膠、氫氣和氨等產品。為確保順利實施,委員會將對有機化學品和聚合物進行技術特性之評估;同時歐洲議會也計畫將管制擴大至間接排放,即包含製造商使用電力所產生之排放,以更能實際反映歐洲工業的二氧化碳成本; (2)逐步實施CBAM並提前終止歐盟排放交易系統(Emissions Trading Scheme, ETS)的免費配額:CBAM預計從2023年1月1日開始試運行,原草案規劃試運行至2025年底,現延長至2026年底;在2023年至2026年過渡期間,歐盟出口商保有100%的歐盟ETS免費配額;而自2027年起則正式施行向進口至歐盟產品之碳含量進行定價,並要求進口商購買與繳交相對應之CBAM憑證。雖然出口商仍有ETS免費配額,但該配額將逐步遞減,並於2032年之前終止免費配額制度,由CBAM完全取代之,以避免對歐盟產業有雙重保護的情形; (3)設立CBAM集中管理機構:歐洲議會認為與其在各會員國內分別指派共27個個別之主管機關(competent authorities),應設立歐盟單一機構集中管理,以提升實施效率、透明度及成本效益;同時,也可避免第三國進口商在各會員國間因管制密度之差異而有挑選法院(forum shopping)的情況; (4)CBAM收入之應用:歐洲議會建議CBAM之收益應歸入歐盟預算,以對最低度開發國家(LDCs)提供至少相當於CBAM收入的財務援助,協助其製造業脫碳,以共同落實歐盟氣候目標,以及《巴黎協定》等國際承諾。
日本推動3種技術資訊管理制度以強化企業技術保護力作為企業競爭力泉源的技術資訊其價值日趨高漲,日本經濟產業省(以下簡稱經產省)以企業界為對象,於2020年7月到2021年9月召開超過20場線上「技術外洩防止管理說明會」,以技術資訊管理為核心,推動3種技術資訊管理制度: 一、技術資訊管理認證制度 基於2018年「產業競爭力強化法」修法,推動「技術資訊管理認證制度」,促進企業通過認證,強化企業取得合作夥伴信賴之能力。 二、營業秘密管理制度 基於日本「不正競爭防止法」,推動「營業秘密管理制度」,防止企業外洩自己的機密資訊,強化企業自我保護之能力。 三、安全保障貿易管理制度 基於企業對於「外國交易行為與外國貿易法」或相關法令知識不足,推動「安全保障貿易管理制度」,避免企業輸出高階技術、高性能產品被作為軍事利用而違法,進而面臨被處刑罰、行政罰之風險,強化企業承擔責任之能力。 全球新興科技發展以及嚴峻疫情驅使之下,我國許多企業投入數位轉型、採取遠距辦公,與客戶間傳遞或保管重要技術資訊時,將增加一定程度的資訊外洩風險,日本3種技術資訊管理制度可供我國企業建構技術資訊管理機制、強化企業技術保護力之參考。
美國佛羅里達州於2021年07月正式開放低速自駕貨車得於道路上行駛隨著新冠肺炎(COVID-19)帶來的影響,以及自動駕駛車輛(Autonomous Vehicle,下稱自駕車,自動駕駛稱為自駕)應用情境發展,美國佛羅里達州(State of Florida,下稱佛州)自2021年07月01日起正式讓低速自駕貨車(Low-Speed Autonomous Delivery Vehicle)可於其境內道路上行駛。 美國佛州首先在其州法典(Florida Statutes)有關全州統一性之車輛定義中,新增低速自駕貨車之定義,即配備毋須人類駕駛之自駕系統,且非設計作為載客運輸之車輛;此外,其須符合聯邦法規法典(Code of Federal Regulation, CFR)定義中之低速車輛(Low-Speed Vehicle),且須配備頭燈、剎車燈、方向燈、尾燈、反光設備以及車輛識別號碼,但不適用於該州其他低速車輛相關限制法規。惟如相關規定有與國家公路交通安全管理局(National Highway Traffic Safety Administration,即NTHSA)另外採用之聯邦規範相衝突時,則依NTHSA採用之規範。 此外,在該州法典亦明示低速自駕貨車在其境內道路上行駛之限制與條件: 1.低速自駕貨車原則僅能在速限低於時速為35英里以下之道路或街道上行駛。(但如該道路與速限超過時速35英里者相交,亦不影響低速自駕貨車穿越該相交路口) 2.低速自駕貨車在以下特定情形,可於速限為時速45英里以下之道路或街道上行駛: (1)低速自駕貨車在該等路段不會連續行駛超過1英里,不過該等路段之管轄單位有權針對連續行駛超過1英里的部分裁量是否放寬限制。 (2)低速自駕貨車並非為了轉向目的而獨立地在右側車道上行駛。 (3)在低速自駕貨車行駛於兩線道的道路或街道上,且後方有5輛以上的車輛時,後方車輛倘若因超車而可能駛入對向車道,或可能導致其他非安全之情境下,低速自駕貨車可在有充分安全駛離之處,自該兩線道的道路或街道駛離至限為時速45英里以下之道路或街道,以利後方車輛得繼續行駛。 3.低速自駕貨車之所有人、其遙控系統(Teleoperation System)之所有人、遠端操作人員(Remote Human Operator)或前開人員之組合式,必須為低速自駕貨車投保符合州法典明文之自駕車相關保險。
美國勞工部發布「人工智慧及勞工福祉:開發人員與雇主的原則暨最佳實務」文件,要為雇主和員工創造雙贏.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 美國勞工部(Department of Labor)於2024年10月發布「人工智慧及勞工福祉:開發人員與雇主的原則暨最佳實務」(Artificial Intelligence and Worker Well-Being: Principles and Best Practices for Developers and Employers)參考文件(下稱本文件)。本文件係勞工部回應拜登總統2023年在其《AI安全行政命令》(Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence)中對勞工的承諾,作為行政命令中承諾的一部分,本文件為開發人員和雇主制定如何利用人工智慧技術開展業務的路線圖,同時確保勞工可從人工智慧創造的新機會中受益,並免受其潛在危害。 本文件以八項AI原則為基礎,提出最佳實踐作法,其重點如下。 1. 賦予勞工參與權(empowering workers):開發人員和雇主履行各項原則時,應該秉持「賦予勞工參與權」的精神,並且將勞工的經驗與意見納入AI系統整個生命週期各環節的活動中。 2. 以合乎倫理的方式開發AI系統:開發人員應為AI系統建立標準,以利進行AI系統影響評估與稽核,保護勞工安全及權益,確保AI系統性能符合預期。 3. 建立AI治理和人類監督:組織應有明確的治理計畫,包括對AI系統的人類監督機制與定期評估流程。 4. 確保AI使用透明:雇主應事先告知員工或求職者關於AI系統之使用、使用目的及可能影響。雇主及開發人員應共同確保以清晰易懂的方式公開說明AI系統將如何蒐集、儲存及使用勞工的個資。 5. 保護勞工和就業權利:雇主使用AI系統時,除應保障其健康與安全外,不得侵犯或損害勞工的組織權、法定工資和工時等權利。 6. 使用AI以提升勞工技能(Enable Workers):雇主應先了解AI系統如何協助勞工提高工作品質、所需技能、工作機會和風險,再決定採用AI系統。 7. 支援受AI影響的勞工:雇主應為受AI影響的勞工提供AI技能和其他職能培訓,必要時應提供組織內的其它工作機會。 8. 負責任使用勞工個資:開發人員和雇主應盡責保護和處理AI系統所蒐集、使用的勞工個資。