Google關鍵字廣告在美國贏得重要勝利

  美國聯邦法院近日判決Google販售含Rosetta Stone的關鍵字廣告,並不會造成Rosetta Stone商標的混淆而構成侵權,同時也沒有商標淡化、輔助侵權以及侵權的連帶責任等問題。

 

  在Rosetta Stone與Google一案(Case No. 09cv736, E.D. Va., 8/3/10)的判決中,法院並未再著墨於過去十年來爭論不休的關鍵字廣告販售是否構成商標使用的問題;在本案中,法院假定Google的行為構成潛在可訴的商標使用,在沒有事實爭議的情況下做出對Google有利的即決審判(summary judgment)。判決中認定Google販售Rosetta Stone關鍵字廣告給第三人,並不會對Rosetta Stone的商品來源造成混淆,法院認為Google的使用者可以分辨實際的搜尋結果,以及廣告主的贊助廣告連結。

 

  法院也認定Google對於Rosetta Stone商標的使用受到功能性原則的保護。在本案中法院認為Google的關鍵字扮演著必要的指示功能,並影響廣告的成本與品質。如果沒有這樣的功能,Google將必須為希望鎖定在目標客戶的廣告主創造一個沒效率的搜尋系統。

 

  而過去6個月近200個案例中,Google都在接到Rosetta Stone的通知後,將相關訊息移除,因此,法院援引近期Tiffany 與eBay一案(600 F.3d 93, 2d Cir. 2010),認為Google對於贗品販售者購買關鍵字廣告的一般性認知,尚不足以構成輔助侵權的主觀認知要件。

 

  另外,法院認為僅僅廣告購買的交易關係,並不足以讓Google與贗品之間建立起侵權的連帶責任,就像時代廣場的廣告看板租用一樣,沒有證據顯示提供廣告空間的Google掌控這些贊助廣告的外觀與內容;而在2004年Google開始開放以商標作為關鍵字廣告之後,Rosetta Stone的聲譽持續成長,法院表示無法證明Rosetta Stone的商標因為Google關鍵字廣告販售而淡化。

 

  本案的判決可能終止長久以來對於以商標作為搜尋引擎關鍵字的爭議,儘管商標權人在Rescuecom與Google一案(562 F.3d 123, 2d Cir. 2009)中確認了這樣的行為構成了可訟的商標使用行為,但這樣的行為是否構成侵權仍有待進一步的檢驗,而近五年來Google的關鍵字廣告販售已經變成普遍的商業型態,而Google使用者也越來越習慣分辨一般搜尋結果與贊助廣告的差異,因此,對於這樣的行為要被認定為有混淆誤認之餘而構成侵權,商標權人在美國恐怕還有一段辛苦的路要走。

相關連結
※ Google關鍵字廣告在美國贏得重要勝利, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5276&no=67&tp=1 (最後瀏覽日:2025/09/18)
引註此篇文章
你可能還會想看
行政院以5年320億推動六項策略科技

  為展現對高科技產業的重視,即將於4月1日舉行之行政院科技顧問會議年度會議,會議重點將鎖定「科技人才發展」與「下世代網路環境建構」。在「科技人才發展」方面,林政委逢慶表示,科技人才發展攸關台灣科技核心競爭力,政府必須進行中、長期人才資源規劃運用,放眼到2015年,政府將持續積極推展延攬海外科技人才的計畫;在替代役條例修正納入研發替代役後,未來投入科技的役男員額,將從目前國防訓儲每年3,500名逐年放寬到1萬人。   另外,政府將在五年內提撥近320億元,發展軟性電子、RFID(無線射頻)、奈米科技、智慧型機器人、智慧化車輛、智慧化居住空間等六大策略性生活科技產業,今年將先提撥58億元投資這些策略性產業上。此外 行政院科技顧問對於發展台灣成為全球奈米研發中心有高度期許,近日亦在行政院科技會報中確認,今年起到2010年的五年內,將投入200億元於奈米科技生活化相關產業上。這是行政院產業科技策略會議所訂六大策略性科技產業中,編列預算最大的一筆。

下一個要控告的是…其它所有公司?

  Eolas,一家由加州大學資助成立的軟體技術研發公司,於1999年控告微軟侵犯了一個關於瀏覽器技術的專利 – US 5,838,906。該專利所揭露的技術讓微軟的IE瀏覽器得以嵌入互動式內容的外掛(plug-in)程式。2003年,美國芝加哥法院認定微軟侵犯906專利,並判決微軟必需賠償Eolas及加州大學5.21億美元。2007年,微軟終於暫時與Eolas達成和解,但兩家公司都不願透漏和解的內容。     美西時間2009年10月6日上午,Eolas大動作地控告包含科技業的Adobe、Amazon、Apple、eBay、Google、Sun Microsystems、Texas Instruments、Yahoo、YouTube,以及非科技業的Citigroup、JPMorgan Chase …等共22家公司,侵犯上述906專利以及其所衍生的US 7,599,985專利。Eolas表示:「985專利是 906專利的延續,其所揭露的技術能讓網站透過附加元件和Ajax網頁開發技術的使用,為其線上服務加入完全互動式的嵌入應用軟體。」     此外,Eolas總裁Michael Doyle博士也表示:「我們只想獲得公平的對待。本公司在15年前就已經研發並廣泛的展示這些技術。使用本公司的技術來營利且未付出合理報酬的情形對本公司並不公平。」 至於被控告的大多數公司目前都尚未做出正式的回應。

國際海事組織建立海上自駕船舶監理架構

  國際海事組織(International Maritime Organization, IMO)所屬之海事安全委員會(Maritime Safety Committee, MSC)於2018年12月召開第100屆大會(MSC 100),本屆會議批准海上自駕船舶監管架構,要點如下: 一、盤點相關國際海事組織規範,以確認該規範: 是否適用於海上自駕船舶(Maritime Autonomous Surface Ships, MASS)及是否妨礙其運作與航行;或 是否適用於海事海上自駕船舶且不妨礙其運作;或 是否適用於海事海上自駕船舶且不妨礙其運作,但需要進一步調修。   MSC預計相關規範之盤點結論將於2019年6月前完成,並期待於2020年完成相關法規調適,盤點範圍包括:安全規範(SOLAS)、碰撞規範(COLREG)、載重線與穩度(Load Lines Convention)、海員與漁夫訓練(STCW, STCW-F)、搜尋與救援(SAR)、噸位丈量(Tonnage Convention)、貨櫃安全(CSC)、以及特殊貿易客船(SPACE STP, STP)。 二、 定義海上自駕船舶之自動化等級: 等級1:配備有自動化處理與決策支援船舶,海員仍於船上對船舶系統及相關功能進行控制。某些功能可以於無人監控下自動化運作,但船員於船舶上仍應於自動駕駛系統發生故障時進行人為介入。 等級2:有船員隨船之遙控控制船。該船舶係由岸上人員控制,惟船上之船員可於必要時介入並接手運作該船舶之自動駕駛系統與功能。 等級3:未有船員隨船之遙控控制船,該船舶由岸上人員控制。 等級4:全自動化船舶,船舶之自動駕駛系統可自行做出決策並反應。   此外,MSC預計提出海事海上自駕船舶航行指引(Guidelines on MASS trials),該指引將於下一會期(MSC101)之國際海事委員會會議進行草擬。

世界經濟論壇發布《人工智慧公平性和包容性藍圖》白皮書

  世界經濟論壇(World Economic Forum, WEF)於2022年6月29日發布《人工智慧公平性和包容性藍圖》白皮書(A Blueprint for Equity and Inclusion in Artificial Intelligence),說明在AI開發生命週期和治理生態系統中,應該如何改善公平性和強化包容性。根據全球未來人類AI理事會(Global Future Council on Artificial Intelligence for Humanity)指出,目前AI生命週期應分為兩個部分,一是管理AI使用,二是設計、開發、部署AI以滿足利益相關者需求。   包容性AI不僅是考量技術發展中之公平性與包容性,而是需整體考量並建立包容的AI生態系統,包括(1)包容性AI基礎設施(例如運算能力、資料儲存、網路),鼓勵更多技術或非技術的人員有能力參與到AI相關工作中;(2)建立AI素養、教育及意識,例如從小開始開啟AI相關課程,讓孩子從小即可以從父母的工作、家庭、學校,甚至玩具中學習AI系統對資料和隱私的影響並進行思考,盡可能讓使其互動的人都了解AI之基礎知識,並能夠認識其可能帶來的風險與機會;(3)公平的工作環境,未來各行各業需要越來越多多元化人才,企業需拓寬與AI相關之職位,例如讓非傳統背景人員接受交叉培訓、公私協力建立夥伴關係、提高員工職場歸屬感。   在設計包容性方面,必須考慮不同利益相關者之需求,並從設計者、開發者、監督機關等不同角度觀察。本報告將包容性AI開發及治理整個生命週期分為6個不同階段,期望在生命週期中的每個階段皆考量公平性與包容性: 1.了解問題並確定AI解決方案:釐清為何需要部署AI,並設定希望改善的目標變量(target variable),並透過制定包容性社會參與框架或行為準則,盡可能實現包容性社會參與(特別是代表性不足或受保護的族群)。 2.包容性模型設計:設計時需考慮社會和受影響的利益相關者,並多方考量各種設計決策及運用在不同情況時之公平性、健全性、全面性、可解釋性、準確性及透明度等。 3.包容性資料蒐集:透過設計健全的治理及隱私,確定更具包容性的資料蒐集路徑,以確保所建立之模型能適用到整體社會。 4.公平和包容的模型開發及測試:除多元化開發團隊及資料代表性,組織也應引進不同利益相關者進行迭代開發與測試,並招募測試組進行測試與部署,以確保測試人群能夠代表整體人類。且模型可能隨著時間發展而有變化,需以多元化指標評估與調整。 5.公平地部署受信任的AI系統,並監控社會影響:部署AI系統後仍應持續監控,並持續評估可能出現新的利益相關者或使用者,以降低因環境變化而可能產生的危害。 6.不斷循環發展的生命週期:不應以傳統重複循環過程看待AI生命週期,而是以流動、展開及演變的態度,隨時評估及調整,以因應新的挑戰及需求,透過定期紀錄及審查,隨時重塑包容性AI生態系統。   綜上,本報告以包容性AI生態系統及生命週期概念,期望透過基礎設施、教育與培訓、公平的工作環境等,以因應未來無所不在的AI社會與生活,建立公司、政府、教育機構可以遵循的方向。

TOP