歐盟在今年5月19日公布的數位議程(Digital Agenda)中,設定了多項寬頻建設目標,包括所有歐洲民眾於2013年均能擁有基本寬頻, 2020年擁有30Mbps以上的高速寬頻,與50%以上的歐盟家戶擁有100Mbps以上的超高速寬頻。為達成此項目標,歐盟執委會於今年9月20日提出了採納下世代網路管制建議(Commission Recommendation on regulated access to Next Generation Access Networks(NGA))、提出未來五年的無線電頻譜政策計畫,與鼓勵公、私部門進行寬頻網路投資等三項主要推動措施。
在NGA管制建議正式公布前,執委會曾於2008年與2009年兩度就建議草案進行公開資詢。執委會認為,此一建議除了可提升管制明確性,避免管制假期(regulatory holidays)外,並在鼓勵投資與維護競爭間取得適當平衡,其重要管制原則如下:
1. 管制者對於獨占業者之光纖網路接取進行成本訂價管制時,應藉由風險溢價(risk premium)充分反應投資風險,使投資者能獲取具吸引力之利潤。
2. 管制者應採取適當的接取管制措施,促使新進業者進入市場,使其可依投資階梯(ladder of investment)逐步建置其自有網路,促進基礎設施競爭。
3. 管制者所採取之事前管制措施,應反映個別市場與城鄉區域之市場競爭差異。
4. 管制建議強烈支持NGA網路的共同投資,並對長期或大量的光纖迴路接取合約,允許在一定條件下給予價格折扣。
歐盟《人工智慧法》(Artificial Intelligence Act, AIA)自2024年8月1日正式生效,與現行的《醫療器材法》(Medical Devices Regulation, MDR)及《體外診斷醫療器材法》(In Vitro Diagnostic Medical Devices Regulation, IVDR)高度重疊,特別是針對用於醫療目的之人工智慧系統(Medical Device AI, MDAI)。為釐清三法協同適用原則,歐盟人工智慧委員會(Artificial Intelligence Board, AIB)與醫療器材協調小組(Medical Device Coordination Group, MDCG)於2025年6月19日聯合發布常見問答集(Frequently Asked Question, FAQ),系統性說明合規原則與實務操作方式,涵蓋MDAI分類、管理系統、資料治理、技術文件、透明度與人為監督、臨床與性能驗證、合規評鑑、變更管理、上市後監測、資安與人員訓練等面向。 過去,MDR、IVDR與AIA雖各自對MDAI有所規範,但始終缺乏明確的協同適用指引,導致製造商、監管機關與醫療機構在實務操作上常面臨混淆與困難。本次發布的指引透過36題問答,系統性釐清三法在高風險MDAI適用上的關聯,重點涵蓋產品分類原則、合規評鑑流程以及技術文件準備要點,具高度實務參考價值。此外,傳統醫療器材的上市後監測,難以有效因應AI系統持續學習所帶來的風險。AIA因此要求高風險MDAI建立強化的上市後監控系統,並評估AI系統與其他系統交互作用可能產生的影響。 整體而言,該指引的發布不再僅限於MDAI技術層面的合規審查,而是進一步擴展至資料正當性、系統可控性、使用者能力與整體風險治理等層面,體現歐盟對AI倫理、透明與責任的制度化落實。此文件亦為歐盟首次系統性整合AI與醫療器材監管原則,預期將成為MDAI產品研發與上市的重要參考依據。 本文同步刊載於stli生醫未來式網站(https://www.biotechlaw.org.tw)
美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。
藥品監管機構負責人組織與歐洲藥品管理局聯合巨量資料指導小組發布2021-2023年工作計畫,提高巨量資料於監管中之效用藥品監管機構負責人組織(Heads of Medicines Agencies, HMA)與歐洲藥品管理局(European Medicines Agency, EMA)聯合巨量資料指導小組(HMA-EMA joint Big Data Steering Group, BDSG)於2021年8月27日發布「巨量資料指導小組2021-2023年工作計畫」(Big Data Steering Group Workplan 2021-2023),將採以患者為焦點(patient-focused)之方法,將巨量資料整合至公衛、藥物開發與監管方法中,以提高巨量資料於監管中之效用。指導小組將利用「資料分析和真實世界訊問網路」(Data Analysis and Real World Interrogation Network, DARWIN EU)作為將真實世界資料整合至監管工作之關鍵手段; DARWIN EU諮詢委員會(Advisory Board)已於2021年建立,DARWIN EU協調中心(Coordination Centre)亦將於2022年初開始運作。 為確保資料品質與代表性,未來工作計畫將與「邁向歐洲健康資料空間–TEHDAS」(Towards A European Health Data Space – TEHDAS)合作,關注資料品質之技術與科學層面,並將於2022年提出第一版「歐洲監管網路資料品質框架」(data quality framework for the EU Regulatory Network)、「真實世界資料來源選擇標準」(criteria for the selection of RWD sources)、「詮釋資料優良規範指引」(metadata good practice guide)、「歐盟真實世界資料公用目錄」(public catalogue of European RWD)等規範。 此外,工作計畫將於2021年底舉辦「學習計劃」(learnings initiative)研討會,討論包括EMA人用藥品委員會(Committee for Medicinal Products for Human Use, CHMP)對於真實世界證據於藥品上市許可申請(Marketing Authorization Application, MAA)、適應症擴張(extensions of indications)之審查,以及過去真實世界資料分析試點於委員會之決策等議題,以利後續指引之修正。 最後,工作計畫預計於2021年底完成「健康照護資料二次使用之資料保護問與答文件」(question and answer document on data protection in the context of secondary use of healthcare data),以指導利益相關者與促進公共衛生研究,並發布由歐盟監管網路(EU Regulatory Network)同意之對於藥品監管(包括巨量資料)之資料標準化戰略。
美政府將加強對抗盜版與仿冒美國歐巴馬政府在6月22日公布一份範圍廣泛的智慧財產執法聯合策略計畫(Joint Strategic Plan on Intellectual Property Enforcement),目的是希望協同聯邦各部門增強有關智慧財產權的執法力度,以打擊美國境內與境外盜版與仿冒日益嚴重的問題。 智慧財產執法協調員(Intellectual Property Enforcement Coordinator, IPEC)Victoria Espinel在報告前言指出,打擊仿冒和盜版需要聯邦強而有力的反應;作為全球創新領導者的美國已因為有些國家未能依照法律規定或國際條約來執法或採取不利美國之產業政策而被傷害。此計畫提出33個執法策略行動項目(enforcement strategy action items)來加強智慧財產執法,包括增加執法政策透明度以及美國境內、外執法行動的分享與報導、確保政府各層級間的執法效能與協調、加強美國智慧財產權的國際執法、確保安全的供應鏈以杜絕侵權產品輸入美國等。 舉例而言,該計畫非常關注外國網站線上侵權(online piracy)的問題,認為網際網路不應成為犯罪行為的工具,強調美國政府必須和外國政府、國際組織以及私部門共同合作對抗,並鼓勵內容擁有者(content owners)、ISP業者、廣告經紀商(advertising brokers)、付款處理業者(payment processors)和搜尋引擎業者在尊重合法競爭、言論自由與個人穩私之下,彼此合作謀求實際解決方案。根據報導,盜版已造成美國的影視業年度損失205億美元產值、工作者年度短少55億美元的收入、也減少了原本可帶來多於14萬個的工作職缺,結果使美國年度稅收短少了8.37億美元。