GPL(General Public License,通用公共許可證)即將進行更新修訂

  FSF Free Software Foundation,自由軟體基金會)於日前公佈,將針對現行版本GPL Version 2進行更新修訂。由於GPL Version 21991 年使用至今未曾修改過,隨著軟體開發技術日新月異,新興網路應用議題亦不斷產生,故確時有必要更新修訂。FSF預定在2006年第一週會公布GPL v3草案,詳細說明每一條條文修改的原因及影響,並提供予IT產業、軟體使用者、以及和GPL v3有利害關係的各界人士,共同彙集多方的意見,以期獲得更廣大的效益。


  然改寫
GPL v3實屬不易。GPL是世界性的授權條款,但現今世界各國的著作權法與專利法等相關法令規範不一,再加上新興的網路應用技術與模式,GPL v3新規範應儘可能將上述要項考量納入增訂,以避免引發爭議;若是相關爭議順利解決的話,預料2007年年初就可將GPL v3擬訂完成。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ GPL(General Public License,通用公共許可證)即將進行更新修訂, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=540&no=86&tp=1 (最後瀏覽日:2025/10/16)
引註此篇文章
你可能還會想看
何謂「AI創作物」?

  日本智慧財產戰略本部之「次世代智財系統檢討委員會」於2016年4月18日公布的報告書針對「AI創作物」有諸多討論,截取部份內容如述。   以現行著作權法來看,自然人創作產生的創作物,受到著作權保護並無疑問。倘若係自然人利用AI做為道具產出的創作物,若具備(1)創作意圖;(2)創作貢獻,兩種要件,亦得取得權利。然而,若該創作物僅透過人類指示,過程係由AI自主生成,此時該創作物即屬於AI創作物,目前非屬著作權法保護之範圍。惟上述三種情況在外觀辨識上極為困難。換言之,人類創作物與AI創作物之界線已愈趨模糊。   AI創作物可能具備多種態樣,包括:音樂、小說等,甚至包括新技術及服務的生成。以音樂、小說為例,由於日本著作權法係以「創作保護主義」為前提,只要該創作物完成時具有原創性,即受著作權保護,AI的特性可能會造成該當著作權保護之著作物數量遽增;若AI產生的成果屬於技術或服務,以專利審查需具備新穎性、進步性等要件而言,得獲取專利權難度相對比較高。   而日本政府在討論AI創作物是否具有「保護必要性」,主要係以智財權「激勵理論」出發,該理論核心在於保護人類的投資行為應獲得合理報酬,才有續行創作的動機。

點對點分享軟體導致資料外洩

  位於美國紐約州的一家知名藥廠2007年9月初宣佈其已確認大約有34000名員工的個人資料從某位員工的電腦外洩並遭人非法下載。   整起事件係導因於一位藥廠的員工自行於公司配發的筆記型電腦上安裝未經授權的檔案分享軟體,導致大約有34000名員工的個人資料在網路上被人下載流傳。至於因這起事件遭到外洩的個人機密資料包括員工姓名、社會福利號碼、出生日期、電話號碼和銀行信用狀況等等。   美國司法部門目前已針對這起資料外洩事件展開調查,並要求這家藥廠針對他們用來防止資料外洩的處理方式以及事件發生時的所有相關應變措施提出報告。根據調查,事實上早在今年7月10日這家藥廠即已發現這起大量個人資料外洩事件,卻遲至8月24日才以電子郵件通知資料外洩的被害人,反應時間長達六個星期之久,導致損害持續擴大。   由這起藥廠員工個人資料外洩事件正可顯示點對點(P2P)網路分享軟體確實潛藏著嚴重的資訊安全風險。透過此類軟體,網路駭客得以完整地掃描他人電腦硬碟中的檔案,讓不知情使用者的機密資料隨時處於高度的風險當中。   點對點檔案分享軟體(P2P),當初開發的目的在於集合眾人電腦之力,增加網路的連結數量,進而快速傳輸檔案。但以此作為入侵他人電腦的工具,甚至未經允許盜取他人的電腦中檔案資料等之新電腦犯罪型態,值得相關主管機關注意。

日本IPA/SEC公佈「IoT高信賴化機能編」指導手冊

  日本獨立行政法人情報處理推進機構(IPA/SEC)於2016年3月公佈「聯繫世界之開發指引」,並於2017年5月8日推出「IoT高信賴化機能編」指導手冊,具體描述上開指引中有關技術面之部份,並羅列開發IoT機器、系統時所需之安全元件與機能。該手冊分為兩大部份,第一部份為開發安全的IoT機器和關聯系統所應具備之安全元件與機能,除定義何謂「IoT高信賴化機能」外,亦從維修、運用角度出發,整理開發者在設計階段須考慮之系統元件,並依照開始、預防、檢查、回復、結束等五大項目進行分類。第二部份則列出五個在IoT領域進行系統連接之案例,如車輛和住宅IoT系統的連接、住家內IoT機器之連接、產業用機器人與電力管理系統之連接等,並介紹案例中可能產生的風險,以及對應該風險之機能。IPA/SEC希望上開指引能夠作為日後國際間制定IoT國際標準的參考資料。

英國資料倫理與創新中心提出「議題速覽-深度偽造與視聽假訊息」報告

  英國資料倫理與創新中心(Centre for Data Ethics and Innovation, CDEI)於2019年10月發布「議題速覽-深度偽造與視聽假訊息」報告(Snapshot Paper - Deepfakes and Audiovisual Disinformation),指出深度偽造可被定義為透過先進軟體捏造特定人、主題或環境樣貌之影片或聲音等內容。除取代特定主體之臉部外,其亦具備臉部特徵重塑、臉部生成與聲音生成之功能。而隨相關技術逐漸成熟將難辨網路視聽影像之真偽,故CDEI指出有必要採取相關因應措施,包含: 一. 立法 許多國家開始討論是否透過訂立專法因應深度偽造,例如紐約州眾議院議員提出法案禁止特定能取代個人臉部數位技術之應用,美國國會亦有相關審議中草案。然而,縱有法律規範,政府仍無法輕易的辨識影片製造者,且相關立法可能抑制該技術於正當目的上之應用,並導致言論自由之侵害,故未來英國制定相關制度之制定將審慎為之。 二. 偵測 媒體鑑識方法於刑事鑑識領域已實行多年,其也可以運用於辨識深度偽造。媒體鑑識方法之一為檢查個體是否有物理上不一致之現象,以認定特定證物是否經竄改,包括拍攝過程中被拍攝對象是否眨眼,或皮膚上顏色或陰影是否閃爍。雖目前英國相關鑑識專家對於媒體鑑識方法是否可辨識深度偽造仍有疑義,惟相關單位已經著手發展相關技術。 三. 教育 教育亦為有效因應深度偽造之方法。目前許多主流媒體均開始喚起大眾對於深度偽造之意識,例如Buzzfeed於去年即點出5個方法以辨認有問題之影片。科技公司也開始投入公眾教育,提高成人網路使用者對於假訊息與深度偽造之辨識,然而報告指出其成效仍有待觀察。

TOP