本文為「經濟部產業技術司科技專案成果」
加拿大數位隱私法(Digital Privacy Act)於2015年6月18日獲得皇室御准,該法目的係為修訂規範私部門運用個人資料的聯邦個人資料保護及電子文件法(Personal Information Protection and Electronic Documents Act, PIPEDA)。該法有多個章節於公告時便即刻施行,但仍有部分章節需待日後其他行政機關公告配套之法規後始能正式施行,例如該法的重點章節之一:「安全防護措施之違反」(Breaches of Security Safeguards)。 歷經約莫兩年,加拿大創新、科學及經濟發展部(Innovation, Science and Economic Development Canada)於2017年9月2日公告安全防護措施違反之規則草案(Breaches of Security Safeguards Regulations),以及規則衝擊分析聲明(Regulatory Impact Analysis Statement)。草案自公告時起開放30天供相關利益關係人發表意見,未來將和數位隱私法的「安全防護措施之違反」同時生效施行。 草案制定目的在於確保加拿大本國人若遇有資料外洩且具有損害風險時,可收到精確的相關資訊。私部門對本人的通知應包含使本人可理解外洩的衝擊和影響的詳細資訊。草案確保加拿大個人資料保護公署(Office of the Privacy Commissioner of Canada)之專員亦能獲得有關資料外洩的確實且對等資訊,並可監督、確認私部門遵守法規並執行。草案詳載私部門於通報個人資料保護公署時應提交的資訊,以及通知本人時應提供的資訊,且不限制私部門額外提供其他資訊。遇有資料外洩情事而故意不即時通報個人資料保護公署或通知本人者,最高將可處十萬美金罰鍰。
政府資訊加值利用與管理法制研究:以美國及英國為例 美國HHS發布2024-2030年聯邦健康IT計畫推動共享醫療體系美國衛生及公共服務部(United States Department of Health and human Services, HHS)於2024年9月底發布「聯邦健康IT策略計畫」(Federal Health IT Strategic Plan),強化電子健康資訊存取、交換和使用,提升健康管理能力、改善醫療照護體驗、推動健康研究及創新,並提出四大目標 四大目標包括: 1. 提倡健康福祉:賦予個人管理自身健康的權利,確保個人和公眾獲得現代且公平的醫療服務,並促進社區健康與安全。 2. 強化醫療照護的提供和體驗:提供安全、公平且優質的醫療服務,擴大病人獲取優質醫療途徑並減少健康差異。加強競爭和透明度改善醫療體系,減輕醫療提供者的監管和管理負擔,並增強使用健康IT工具的信心。 3. 加速研究創新:允許健康IT使用者適當存取健康資料以推動個人和公眾健康的改善。加強個人和公眾層面研究與分析,透過使用代表性不足群體的健康資料,促進健康公平。 4. 醫療資料連結醫療系統:持續推動健康IT工具的開發和應用、資料共享、普及健康IT基礎設施、保護個人隱私和安全、整合的公共衛生資料和基礎設施。 在健康IT策略計畫中也聚焦在健康公平性、人工智慧應用、資料共享及安全性等議題,並提出了六大實施原則:以人為本的包容性設計、安全且優質的健康資訊、資料導向的決策、提升全民健康公平性、鼓勵創新和競爭。透過聯邦政府健康IT策略目標與原則,預期在6年內提供更有效、公平和現在化的醫療系統。
數位模擬分身(Digital Twin)數位模擬分身(Digital Twin)係指將實體設備或系統資訊轉為數位資訊,使資訊科學或IT專家可藉此在建立或配置實際設備前進行模擬,從而深入了解目標效能或潛在問題。 於實際運用上,數位模擬分身除可用於實體設備製造前,先行針對產品進行測試,以減少產品缺陷並縮短產品上市時間外,亦可用於產品維護,例如在以某種方式修復物品前,先利用數位模擬分身測試修復效果。此外,數位模擬分身還可用於自駕車及協助落實《一般資料保護規範》(General Data Protection Regulation, 以下簡稱GDPR)規定。在自駕車方面,數位模擬分身可通過雲端運算(cloud computing)和邊緣運算(edge computing)連接,由數位模擬分身分析於雲端運算中涉及自駕系統操作之資訊,包括全部駕駛週期內之資料,如車輛模型在內之製造資料(manufacturing data)、駕駛習慣及偏好等個人隱私資料、感測器所蒐集之環境資料等,協助自駕系統做出決策;在GDPR方面,數位模擬分身可利用以下5大步驟,建立GDPR法規遵循機制以強化隱私保護:1.識別利害關係人與資產,包括外部服務和知識庫;2.漏洞檢測;3.透過虛擬數值替代隱私資料進行個資去識別化;4.解釋結果資料;5.利用資料匿名化以最大限度降低隱私風險,並防止受試者之隱私洩露。