網路搜尋引擎龍頭Google 控告Microsoft剽竊搜尋結果

  網路搜尋引擎龍頭Google質疑Microsoft研發的“Bing”搜尋引擎有剽竊Google搜尋結果的狀況,對此Google已提出訴訟。Google表示,為了要調查是否有搜尋結果被剽竊的情形,故意在搜尋引擎中創造近100個毫無意義的搜尋關鍵字,例如“Hiybbprqag”、“Mbzrxpgiys”和“Indoswiftjobinproduction”等,同時對應該關鍵字插入虛假的搜尋結果。在幾個禮拜之後,Google發現競爭對手Microsoft 的Bing搜尋引擎也出現相同的搜尋結果,因此認為Bing有剽竊之疑。Google表示:「Google的搜尋結果是經過多年辛苦努力的成果,這件事情對我們來說像是一場馬拉松賽跑中有人在背後偷襲你,然後突然跳到終點站前迎接勝利,是一種欺騙的行為。」


  Microsoft否認剽竊搜尋結果,認為這是Microsoft用來提高搜尋品質結果的方法之一,Bing實際上使用不同的符號和方法來對於不同的搜尋結果加以分級,用來辨別不同的搜尋結果。同時針對搜尋結果提供多數關連的答案,藉此增加消費者對於Bing搜尋引擎的良好經驗,Google使用間諜手法(Spy-novelesque stunt)對競爭對手進行調查,此舉已抹黑Bing,蒙上不好的評價。


  Google提出抗辯認為Bing的行為構成簡單而顯然的詐欺,造成不同的搜尋引擎產生同樣的搜尋結果。況且搜尋引擎的功能,若可以出現與Google搜尋下相同的結果,並無法保證能創造出更好的搜尋品質,Microsoft的說法無法獲得肯認,後續延燒的訴訟爭議,有待日後進一步觀察。

相關連結
※ 網路搜尋引擎龍頭Google 控告Microsoft剽竊搜尋結果, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5413&no=67&tp=1 (最後瀏覽日:2026/02/22)
引註此篇文章
你可能還會想看
BSI公布個人資料管理系統標準之草案

  英國國家標準組織(British Standard Institution)於2009年1月8日公布個人資料保護管理系統標準(標準標號為DPC BS 10012)之草案,使組織在個人資料儲存管理工作上符合個人資料保護法(Data Protection Act 1998,DPA)之要求。   有鑑於利用個人資料管理系統(personal information management system,PIMS)管理業務上取得之資料之情形日益增多,而觀諸該資料之性質,通常多為DPA所規範定義的「個人資料」。因此,為使個人資料管理有其標準規範,並得以運用在任何規模之公私部門,使組織內之個人資料管理系統符合DPA之規範且具有一定程度之安全性,BSI試圖提出有關個人資料管理一致性之標準規範,以供組織在個人資料處理程序工作上之遵循。該標準規範如同BS EN ISO 9001:2000之品質管理系統(Quality Management System)及BS ISO/EC 27001:2005之資訊安全管理系統標準,以PDCA週期(Plan-Do-Check-Act)進行規劃,並透過執行所規範之流程落實個人資料之保護。   目前該草案已經公布,BSI於2009年3月31日前將接受各界對於該草案之諮詢及舉辦公聽會,以求標準規範之完善。

初探與省思我國法制下之侵權行為適用於非依軌道行駛之自動駕駛車輛之過失內涵

初探與省思我國法制下之侵權行為適用於非依軌道行駛之自動駕駛車輛之過失內涵 資訊工業策進會科技法律研究所 2019年03月15日 壹、事件摘要   於2018年03月18日晚間10時許,美國亞利桑那州(Arizona,下稱Arizona)一名49歲的婦人,遭到配備Uber自動駕駛系統之車輛[1],在運行自動領航模式(Autopilot)下撞擊,雖然該婦人立即送往醫院,但仍回天乏術而在醫院中去世。就在前開事故發生後,Arizona州長Doug Ducey因此下令其暫停測試。[2]   此外,同年12月11日晚間10時許,在我國有一輛配備自動輔助駕駛功能的Tesla,疑似駕駛人精神不濟因而未能及時注意車前狀況,導致車禍發生,雖然肇責是否牽涉Tesla之自動輔助駕駛功能或駕駛人本身有無疲勞駕駛等情事,有待進一步釐清。[3]   綜上,不論測試或道路駕駛,現今社會已不乏具有一定自動駕駛等級之車輛於路上行駛,然而在推廣、研發或應用自動駕駛車輛(下稱自駕車)的同時,若不幸發生類似前開新聞之(車禍)事故時,相關肇事責任究應如何釐清,隨著我國已於2018年12月19日公布無人載具科技創新實驗條例以積極推動自駕車相關應用,更愈顯重要,為解決前開肇事相關疑慮,本文擬針對民事上之「過失」本質,反思自駕車相關應用可能延伸的事故責任,是否因應科技發展而有不同的過失內涵。 貳、重點說明   承上,面對自駕車相關科技與應用的世界洪流,若發生車禍等交通事故時,當事人相關之損害賠償請求,仍大多以民法上之侵權行為作為基礎,雖事故肇因種類眾多,亦常見各類的肇因共同造成事故發生,但本文考量相關議題繁複,以下僅就非依軌道行駛之自駕車、駕駛人過失內涵等框架下依序進行初探與反思: 一、我國侵權行為損害賠償係以行為人有無具抽象輕過失為斷   車禍之發生,若涉及駕駛人之行為者,受有不論財產或人身損害之人而欲請求賠償者,無論係依據民法第184條以下何條侵權行為之規定(即民法第184條第1項前段、同條項後段或第191條之2等規定),請求駕駛自駕車之人賠償,前提均為駕駛人具有過失,差別僅在舉證責任是否由請求權人(受有損害之人)負擔。   承上,既然前開侵權行為之重要成立要件為過失,其具體內容為則為駕駛人之注意義務應至何種程度,然在我國民事過失責任之架構上,有不同程度上之區分,即分別為抽象輕過失、具體輕過失及重大過失三種。申言之,抽象輕過失為欠缺應盡善良管理人之注意者義務;具體輕過失者為欠缺應與處理自己事務為同一注意者;重大過失者為顯然欠缺普通人之注意者[4]。   對此,實務見解[5]以及學者[6]歷來均認侵權行為之過失標準,應以行為人是否克盡客觀化之過失標準─抽象輕過失,倘否,則應負擔過失之賠償責任,是以,就此脈絡推論,自駕車之駕駛人若有違善良管理人注意義務致車禍發生且使他人受損害,即應負損害賠償責任。 二、駕駛人注意義務與自駕車自動駕駛程度間之互動   根據引領世界自駕車標準的領銜者─國際汽車工程師學會(Society of Automotive Engineers International,下稱SAE)所分類之自動化駕駛等級,區分為等級0至等級5(共6個等級),而等級3後之自駕車即開始逐漸將環境監控的任務從駕駛人移轉至車輛本身,而駕駛人僅在特殊條件下,方須接管駕駛車輛,更甚在等級5時是由自駕車在任何狀況下均可自行駕駛,不過在等級2前之等級,環境監控之任務大多在駕駛人身上,自駕車至多僅係協助運行駕駛人之指令[7]。   然而,自駕車駕駛人因車禍所生之侵權行為責任,誠如前述,係以駕駛人存有抽象輕過失作為前提,而過失之本質,則係雖非故意,但按其情節,(1)行為人(駕駛自駕車之人)應或能注意,卻不注意,或(2)雖可預見侵權行為(車禍肇事)之事實發生,但確信不發生[8],就此,在SAE分類等級2以前之自駕車,因監控環境之任務仍由駕駛人負擔,則該類等級自駕車之駕駛人應與一般車輛之駕駛人,負擔相同侵權行為之注意義務內容(或程度),但等級3至等級5自駕車之各式應用情境,車輛行駛環境之相關監控資訊已轉由車輛本身處理、控管,則駕駛人是否對於自駕車之車禍發生,仍具有可預見性,或得注意並防免之,則不無疑慮。 參、事件評析   綜上,本文所提不同等級自駕車,是否當然得以繼續適用傳統民事侵權行為之過失標準判斷駕駛人有無過失,實有相當程度上之衝突,蓋若自駕車之駕駛人對於行車環境資訊已不如駕駛一般車輛時,實難期待駕駛人對於車禍之發生有何預見可能,或在遇見後積極防免結果發生,倘若一概遵循傳統對車禍侵權行為之高注意義務要求─抽象輕過失責任,或將產生使不明瞭或難以預見該事故原因發生之人,卻必須就非因己誤之結果負責,某程度上似有違過失責任之本質,而質變成為無過失之擔保責任。   據此,本文認為,若要解決前開損害發生須有補償或賠償之問題,或可(1)透過保險、基金等方式填補損害,或(2)具體化等級3至等級5自駕車之駕駛人應負何等注意義務,如駕駛人須隨時處於得以接管車輛操作之狀態,使等級3以上之自駕車所應盡之注意義務與傳統侵權行為之注意義務脫鉤處理(3)與商品責任間進行相關的調和等,然而無論如何,對於此等問題或疑慮,究竟應採何方向或多方進行,甚或以其他方式解決,則有待後續更進一步的討論與分析。 [1] Uber於該州進行自動駕駛車輛之測試。 [2] ADOT director's letter to Uber halting autonomous vehicle tests, ADOT, https://www.azdot.gov/media/News/news-release/2018/03/27/adot-director's-letter-to-uber-halting-autonomous-vehicle-tests (last visited Mar. 21, 2019); Ryan Randazzo, Arizona Gov. Doug Ducey suspends testing of Uber selfdriving cars, azcentral, Mar. 26, 2018, https://www.azcentral.com/story/news/local/tempe-breaking/2018/03/26/doug-ducey-uber-self-driving-cars-program-suspended-arizona/460915002/ (last visited Mar. 21, 2019); Ryan Randazzo, Bree Burkitt & Uriel J. Garcia, Self-driving Uber vehicle strikes, kills 49-year-old woman in Tempe, azcentral, Mar. 19, 2018, https://www.azcentral.com/story/news/local/tempe-breaking/2018/03/19/woman-dies-fatal-hit-strikes-self-driving-uber-crossing-road-tempe/438256002/ (last visited Mar. 21, 2019). [3] 蘋果日報,〈台灣首例!特斯拉自動駕駛闖禍 國道上撞毀警車〉,2018/12/12,https://tw.appledaily.com/new/realtime/20181212/1482416/ (最後瀏覽日:2019/03/21)。 [4] 96年台上字第1649號判決。 [5] 19年上字第2476號判例。 [6] 王澤鑑,《侵權行為法》,自版,頁308-309(2011)。 [7] SAE International Releases Updated Visual Chart for Its “Levels of Driving Automation” Standard for Self-Driving Vehicles, SAE International, https://www.sae.org/news/press-room/2018/12/sae-international-releases-updated-visual-chart-for-its-%E2%80%9Clevels-of-driving-automation%E2%80%9D-standard-for-self-driving-vehicles (last visited Mar. 22, 2019). [8] 97年度台上字第864號判決。

荷蘭與德國率先成立GO FAIR國際支援與合作辦公室,推動歐洲開放科學雲

  歐洲開放科學雲(European Open Science Cloud, EOSC)旨在整合現有的數據基礎設施以及科研基礎設施,為歐洲研究人員與全球科研合作者提供共享的開放資料服務。為此,荷蘭與德國於12月率先成立GO FAIR國際支援與合作辦公室(The GO FAIR international support and coordination office, GFISCO)。荷蘭辦公室坐落於萊頓,並由荷蘭政府與萊頓大學醫學中心(Leiden University Medical Center)所共同出資設立。   該辦公室之成立源自於GO FAIR計畫,GO意即全球開放(The Global Open)、FAIR則分別係指可發現(Findable)、可連接(Accessible)、共同使用(Interoperable)和可重複使用(Re-usable),其目標在於跨越國界,開放目前科研領域現有的研究數據,係為邁向歐洲科學雲之里程碑。 荷蘭與德國曾於2017年5月時,發表聯合立場聲明書以展現推動歐洲開放科學雲以及全力支援GO FAIR計畫之企圖心,此次辦公室之設立為,包含以下主要任務: 支援由個人、機構、計畫組織等各方所組成的GO FAIR實踐網絡(GO FAIR Implementation Networks, INs)之營運工作。 進行GO FAIR實踐網絡之協調工作,以避免重複或壟斷之情形發生。 透過教育支援等方式倡議推行GO FAIR計畫。   GO FAIR國際支援與合作辦公室主要之角色為提供建言,而非幫助GO FAIR計畫做決策,若無達成預期效果或是缺乏明確的工作計畫時,該辦公室則可提供相關服務,以協助達成預期目標,並協助處理行政上之相關議題。

美國國家標準技術局(NIST)更新電子簽章標準

  美國國家標準技術局(National Institute of Standards and Technology, NIST)於近日(2013年7月)更新電子簽章的技術標準「FIPS (Federal Information Processing Standard) 186-4數位簽章標準」,並經商務部部長核可。NIST於1994年首次提出電子簽章標準,旨在提供工具可資促進數位時代的信賴性,後續也隨著技術進步與革新,而有多次修訂。此次修訂,主要是調合該標準,使之與NIST其他加密相關指引(如金鑰加密標準)一致,以避免將來可能產生的矛盾。   此次增訂,亦明列出三種可保護資料的簽章產製與確認技術:數位簽章演算法(Digital Signature Algorithm, DSA)、橢圓曲線簽章演算法(Elliptic Curve Digital Signature Algorithm, ECDSA)、以及RSA公眾金鑰演算法(Rivest-Shamir-Adleman Algorithm, RSA)。   其他修訂的部分,還包括語彙的明晰化,以及降低對於隨機號碼產生器的利用限制…等。

TOP