本文為「經濟部產業技術司科技專案成果」
加利福尼亞州(下簡稱加州)州長Jerry Brown於2018年9月30日簽署了一項新法案,規定在加州註冊成立的上市公司以及總部位於加州並在美國證交所上市的外國公司(如德拉瓦州公司),都必須在2019年底之前,於其董事會安排至少一位女性擔任董事,否則將面臨處罰;而此項新規定,亦使加州成為美國第一個要求上市公司將女性納入董事會的州。 此項規定並規定,在2021年年底前,若董事會的規模為6名以上,至少需有3名女性董事,若董事會的規模為5名成員,則至少需有2名女性董事,若董事會規模為4名以下董事,則至少需有1名女性董事。違反此項規定,將受到以下處罰:(1)首次違反處以10萬美元的罰款;(2)再度違反處以30萬美元的罰款,隨後再處以每次違反的罰款。 根據統計,日前在美國3000家最大的上市公司的董事會組成中,女性僅占其中18%,於2017年,更有624家上市公司的董事會中根本沒有女性。該法案表明,促進公司董事會性別平等不僅可以改善所有女性的職場機會,同時還能提高生產力,其依據是瑞士信貸(Credit Suisse)於2014年所作出的一項研究,該研究發現,擁有全男性董事會的公司,其平均股本回報率(Return on Equity, ROE)為10.1%,而擁有至少一名女性董事的公司,其平均股本回報率為12.2%。 根據彭博社(Bloomberg)於2019年的一項新分析,此項變革可為女性提供692個席次,並足以導致美國公司董事會整體性別平衡產生顯著的變化。此外,新紐澤西州(New Jersey)和馬薩諸塞州(Massachusetts)亦在考慮進行類似的立法,其他州也通過了不具拘束力的準則。根據統計,若其他州採用和加州相同立法,羅素3000(Russell 3000)中的公司需要在幾年內為女性開放3732個董事會席次,全國董事會的女性人數將增加近75%。 縱使該法案的反對者認為,這將增加企業改善種族和民族多樣性的難度,並質疑法案的適法性,然該法案的提出者仍認為,此一措施對於提升女性的代表權是必要的,相信當董事會組成多元化,女性的聲音能被聽到時,對整體勞動力的改善會是更好的。
2011年個人資料外洩事件與前年相比減少128件,總數為1551件-預測賠償金額比前年擴大1.5倍日本2011年個人資料外洩事件及事故的件數比前年減少為1551件,但洩漏的個人資料筆數卻超過前年一成以上,約有600萬筆個人資料外洩。從數字來看預估的賠償金額是超過1900億日幣。 日本網路資安協會(JNSA)與資訊安全大學研究所的原田研究室及廣松研究室共同針對報紙集網路媒體所報導的個人資料外洩相關事件及事故所進行的調查所做的結論。 新力集團旗下的海外公司雖然發生合計超過1億筆的大規模個人資料外洩的意外,但此一事故並無法明確判別是否屬於個人資料保護法的適用範圍,因此從今年的調查對象裡排除。 在2011年發生的資料外洩事件有1551件,比起前年的1679件減少128件,大約跟2009年所發生的個人資料外洩差不多水準。外洩的個人資料筆數總計約628萬4363筆,與前年相較約增加70萬筆。平均1件約洩漏4238筆個人資料。 將事故原因以件數為基礎來分析,可以發現「操作錯誤」佔全體的34.8%為第一位,其次是「管理過失」佔32%,再接下來是「遺失、忘記帶走」佔13.7%。但以筆數來看,值得注意的是「管理過失」佔37.7%最多,但「操作錯誤」就僅有佔2.3%的少數。 再以佔全體事件件數5%的「違法攜出」就佔了全體筆數的26.9%;在佔全體件數僅有1.2%的「違法存取」卻在筆數佔了20.9%,可以看到平均每一件的受害筆數有開始膨脹的傾向。 再者從發生外洩原因的儲存媒體來看,紙本佔了以件數計算的68.7%的大多數,以USB記憶體為首的外接式記憶體佔了10.1%;但以筆數計算的話,外接式記憶體佔了59.1%、網路佔了25.5%的不同的發生傾向。 從大規模意外來看,金融機關與保險業界是最值得注意,前10件裡佔了7件。從發生原因來看,「違法攜出」及「內部犯罪」所造成的事故10件中有4件,其次是「管理過失」。規模最大的是山陰合同銀行的受委託人將業務所需的165萬7131件個人資料攜出的事故。 依據2011年所發生的事件及事故的預估賠償額是1899億7379萬日幣。遠超過前年的1215億7600萬日幣。平均一起事件預估損害賠償金額有1億2810萬日幣,每人平均預估賠償金額是4萬8533日幣。
美國加州「Asilomar人工智慧原則決議」美國加州議會於2018年9月7日通過Asilomar人工智慧原則決議(23 Asilomar AI Principles, ACR-215),此決議表達加州對於「23條Asilomar人工智慧原則」之支持,以作為產業或學界發展人工智慧、政府制定人工智慧政策之指標,並提供企業開發人工智慧系統時可遵循之原則。依此法案所建立之重要指標如下: (1)於研究原則上,人工智慧之研究應以建立對於人類有利之人工智慧為目標。 (2)於研究資助上,人工智慧之研究資助應著重幾個方向,如:使人工智慧更加健全且可抵抗外界駭客干擾、使人工智慧促進人類福祉同時保留人類價值以及勞動意義、使法律制度可以順應人工智慧之發展。 (3)於科學政策之連結上,人工智慧研究者與政策擬定者間應有具有建設性且健全之資訊交流。 (4)於研究文化上,人工智慧研究者應保持合作、互信、透明之研究文化。 (5)於安全性上,人工智慧研究團隊應避免為了研究競爭而忽略人工智慧應具備之安全性。 (6)人工智慧系統應該於服務期間內皆具備安全性及可檢視性。 (7)人工智慧系統之編寫,應可使外界於其造成社會損失時檢視其出錯原因。 (8)人工智慧系統如應用於司法判斷上,應提供可供專門人員檢視之合理推論過程。 (9)人工智慧所產生之責任,應由設計者以及建造者負擔。 (10)高等人工智慧內在價值觀之設計上,應符合人類社會之價值觀。 (11)高等人工智慧之設計應可與人類之尊嚴、權利、自由以及文化差異相互調和。 (12)對於人工智慧所使用之資料,其人類所有權人享有擷取、更改以及操作之權利。 (13)人工智慧之應用不該限制人類「客觀事實上」或「主觀知覺上」之自由。 (14)人工智慧之技術應盡力滿足越多人之利益。 (15)人工智慧之經濟利益,應為整體人類所合理共享。 (16)人類對於人工智慧之內在目標應享有最終設定權限。 (17)高等人工智慧所帶來或賦予之權力,對於人類社會之基本價值觀應絕對尊重。 (18)人工智慧所產生之自動化武器之軍備競賽應被禁止。 (19)政策上對於人工智慧外來之發展程度,不應預設立場。 (20)高等人工智慧系統之研發,由於對於人類歷史社會將造成重大影響,應予以絕對慎重考量。 (21)人工智慧之運用上,應衡量其潛在風險以及可以對於社會所帶來之利益。 (22)人工智慧可不斷自我循環改善,而可快速增進運作品質,其安全標準應予以嚴格設定。 (23)對於超人工智慧或強人工智慧,應僅為全體人類福祉而發展、設計,不應僅為符合特定國家、組織而設計。
美國發表網路安全框架2014年2月12日,美國發表「網路安全框架(Cybersecurity Framework)」,該框架係由美國政府、企業及民間機構花費一年的時間共同發展而成,其蒐集了全球現有的標準、指引與最佳實務作法,最後由國家標準技術局(National Institute of Standard and Technology, NIST)彙整後所提出。 本框架主要可分成三大部份: 1.框架核心(Framework Core) 框架核心包括辨識(Identify)、保護( Protect)、偵測( Detect)、應變( Respond)、與復原( Recover)等五項功能。這五項功能組成網路安全管理的生命週期,藉由這五項功能的要求項目與參考資訊的搭配運用,可使組織順利進行網路安全管理。 2. 框架實作等級(Framework Implementation Tiers) 共分成局部(Partial)、風險知悉(Risk Informed)、可重複實施(Repeatable)、合適(Adaptive)四個等級。組織可以透過對風險管理流程、整合風險管理計畫以及外部參與等三個面向的觀察,瞭解組織目前的安全防護等級。 3. 框架側寫(Framework Profile) 框架側寫係組織依照本框架實際操作後所產出的結果,可以協助組織依據其企業需求、風險容忍度,決定資源配置的優先順序,進一步調整其網路安全活動。 此一安全框架旨在提供整體規劃藍圖予尚未建立網路安全架構的組織參考,而針對已有建立網路安全架構者,該框架並未意圖取代組織原先的風險管理程序和網路安全計畫,而係希望協助公、私部門改善資通訊科技和工業控制系統風險管理的能力。