智慧財產法院成立及運作的政策 正式啟動

  司法院於94年年終記者會時,正式發佈我國智慧財產法院即將成立及運作的政策。有鑒於國內外企業在台的專利、商標、著作權等紛爭越來越多,為了節省司法資源、快速釐清企業糾紛、不耗損社會資源等目的,智慧財產法院乃為司法現代化相當重要的一環。


  我國的智財官司時,多是以刑事訴訟為主附帶民事官司,有別於歐美各國的智慧財產案件多以民事訴訟為主。未來智慧財產法院所管轄案件除了民事訴訟事件、刑事訴訟案件外,還包括有行政訴訟事件與強制執行事件,集中事權,專責審理智財權相關案件。此外,為了因應科技界日新月異的技術發展,在智慧財產法院扮演關鍵角色的「技術審理官」,主要負責輔助法官從事專業技術問題之判斷,因此除了由全職公務員-專利審查官或是商標審查官擔任外,亦可任用公私立大專院校之老師或專業研究機構之研究員。



  另一方面,為避免大型企業利用資金優渥之優勢,打壓小型科技公司的發展,智慧財產訴訟中的「假處分」聲請規定,相較於現行民事訴訟法規定嚴格許多,假處分聲請人除提供擔保金外,還必須「強制釋明」理由,若是釋明不足者,法院可駁回其聲請。



  目前司法院已研擬完成「智慧財產法院組織法草案」及「智慧財產案件審理法草案」的全部條文,並公布在司法院網站上,預定在立法院下會期提交立法。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
※ 智慧財產法院成立及運作的政策 正式啟動, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=543&no=67&tp=1 (最後瀏覽日:2025/08/19)
引註此篇文章
你可能還會想看
美國法院對於網路無障礙判決歧異

  加州聯邦中區地方法院於2014年6月在Jancik v. Redbox Automated Retail, LLC (No. SACV 13-1387-DOC, 2014 WL 1920751 (C.D. Cal. May 14, 2014))一案中,判決影片自動出租機公司Redbox勝訴。法院認為,雖然Redbox在其經營的線上影視串流服務中未提供隱藏字幕(closed captioning),導致聽障者無法藉由閱讀影片字幕來了解劇情,但「網站」非美國身心障礙者法(Americans with Disabilities Act,下稱ADA)第三章「民間事業體所營運之公共設施與服務」中所稱「公共設施」(public accommodation),即無障礙建置範疇不包含提供公眾商品與服務的「網站」,因此業者不須提供具可及性之商品,例如:附字幕影片。法院認為第三章並未就公共設施中商品特色和內容有所規範,因此業者無義務改善其他影片存貨規格,使其能為身障者所觀看;又Redbox線上影視串流服務僅有網路通路,依ADA文義解釋,網站亦非屬於公共設施,無提供無障礙建置之必要。   本案與第一巡迴上訴法院在NAD v. Netflix案見解大相逕庭,該案以「美國國家聽障人士協會」(National Association of the Deaf, NAD)為首之公協會,集體對美國知名線上串流影視節目網站Netflix提起訴訟,控告其線上影視節目未提供隱藏字幕,使得聽障人士無法觀看該影片內容,法院判決該平臺網站屬於「公共設施」,依ADA第302條規範,身心障礙者有權利享受公共設施之設備,不得因殘障而受差別對待。有關網站是否屬於ADA第三章所稱公共設施,而使得私法人有改善網頁無障礙技術義務,仍有待觀察。

IMD世界人才評比

  瑞士洛桑管理學院(International Institute for Management Development, IMD)於2019年11月18日發布2019 年世界人才評比報告(The IMD World Talent Ranking 2019 results)。IMD作為全球最著名商學院之一,其所屬之世界競爭力研究中心(IMD World Competitiveness Center, WCC)透過收集數據以及分析相關政策結果,推進對世界競爭力的認知,包含每年出版年度世界競爭力排名(World Competitiveness Rankings)、世界數位競爭力報告(World Digital Competitiveness Ranking),和世界人才評比報告。   2019 年世界人才評比報告以「人才投資與發展」、「人才吸引力」和「人才整備度」(Readiness)為三大評比指標,評比63個經濟體。「人才投資與發展」衡量國家提供給人力之資源,「人才吸引力」評估吸引本地和外國人才的程度,「人才整備度」則評估人才技術及競爭品質。三大指標下再區分有32個細項,包含公共教育支出、師生比、在職訓練、女性勞動力、學徒制度、員工獎酬及紅利、個人所得稅率、職場環境健康等。   2019年之人才評比結果,前5名均為歐洲國家,依序為瑞士、丹麥、瑞典、奧地利及盧森堡。我國在全球排名20,亞洲排名第3,僅次新加坡(10)與香港(15),勝過排名分別為35和33的日韓兩國,為歷年來排名最佳。細項中,我國較為優勢的部分包括國際學生能力評鑑(PISA)排名第2、理工科畢業生比例全球第3、衛生健康環境全球第6等。

歐盟法院判決,電信業者是否有提供其客戶個人資料之義務,由各會員國自行制定規範

  歐盟法院於2008年1月29日判決(Az. C-275/06)指出,基於歐盟現行相關指令規範,並未強制或禁止電信服務提供者有提供客戶或使用者之個人資料的義務。   本案源起於西班牙著作權人團體Productores de Música de España對電信服務提供者Telefónica提出之著作權侵害訴訟。原告Productores de Música de España主張被告Telefónica有義務提供其網路使用者之身分,因該網路使用者乃透過被告所提供之連線服務,連線至檔案分享平台KaZaA,並提供下載違反著作權之音樂檔案。被告Telefónica 則根據西班牙現行資訊社會及網路使用之相關規範,拒絕提供該客戶之個人資料。根據西班牙法令,僅有在刑事犯罪追訴或有明顯侵害公益之情事下,始允許電信服務提供者提供客戶之個人資料。   西班牙法院因此向歐盟法院提出預先決定(Vorabentscheidung)*之請求,請其確認基於現行歐盟法規,各會員國是否應強制民事訴訟程序之當事人,即本案的電信服務提供者,有提供足以確認其使用者身分之資料的義務規定,以達有效遏止著作權侵害之目的。歐盟法院在分析各相關指令如電子商務、隱私權保障等相關規定後,認為歐盟現行法規並未就此議題有強制規定,各會員國應於考量隱私權以及其他權利之保障,且在不違法歐盟規範前提下,自行決定是否在國內制定類似之規定。   反觀德國在落實歐盟「儲存通訊資訊指令(Directive 2006/24/EC)」於國內法後,則允許在符合特定情況下,當事人於民事訴訟程序中有提供個人資料之義務。該法令因存有違反隱私權保護之爭議,通過後迄今仍有極大之反對聲浪。 *因歐盟條約規定,若會員國法院對於條約解釋、共同體組織與歐洲中央銀行行為之有效性與解釋以及執委會所設立的機構的章程之解釋有疑問,且會員國法院認為上述問題之決定於判決之作成有其必要,得申請歐洲法院裁決,此為預先決定。

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP