今(2011)年3月中旬,印度製藥業者代表及相關非政府組織團體共同對外表示,就印度與歐盟即將簽署之自由貿易協議(Free Trade Agreement;簡稱FTA),將正式採取反對之立場。
關於上述印度製藥業者代表及非政府組織團體之所以表示反對歐-印兩國簽署FTA之理由,其主要,乃係因歐盟方面為保障歐盟自身製藥業者本身之利益而擬於日後雙方將所簽署之FTA文件中,設置「資料專屬」條款而生;對此,代表印度境內多家藥廠之印度製藥協會(Indian Pharmaceutical Alliance)秘書長Dilip Shah表示:「目前歐盟方面正利用各種高壓與不正之手段,來迫使印度政府同意其擬置入之資料專屬保護條款」;但歐盟官員John Clancy卻解釋:「歐盟政府之所以擬於將簽訂之FTA中設置資料專屬條款,所寄望者,無非是要為歐盟境內製藥業者,尋求一個平等互惠之立基點而已;換言之,歐盟政府所為之一切,乃是基於要為印度與歐盟兩國業者打造一個公平合理之貿易商業環境」,另外,其還強調:「針對資料專屬條款之簽訂,原則上應在雙方達成共識之前提下進行」。
雖然歐盟方面目前已嘗試作出如上解釋,但印度國內各界似仍普遍認為,一旦同意將資料專屬條款納入,未來除將嚴重影響廣大用藥病患近用低價救命藥品之權益外,亦將大幅限制新興國家產製學名藥品之能力;故包括HIV病患及其他印度民間團體共計超過2000名抗議者,於今年3月2日時,皆紛紛走上新德里市中心街頭,對歐-印即將簽署FTA表達其強烈之抗議與不滿;足見,該項條款將造成之實質影響,絕非歐盟單方三言兩語即可輕描淡寫地帶過;而最終之談判結果,是歐盟方面將作出合理之讓步?還是印度方面為挽最大貿易夥伴之心,而終以犧牲廣大病患及國內製藥業者權益來作為可能之對價?是破局?還是完滿結局?則皆有待後續觀察,方見分曉。
本文為「經濟部產業技術司科技專案成果」
「安全、韌性、高效、永續的數位基礎設施」,是歐盟「數位十年計畫」(Digital Decade Policy Programme 2030)所擘劃的政策目標之一。執委會於2024年2月21日發布「如何掌握歐洲的數位基礎設施需求?」(How to master Europe's digital infrastructure needs ?)白皮書,詳細盤點歐盟數位基礎設施的發展現狀及所面臨的挑戰,提出可能的政策方案並公開諮詢各界意見。 其中有關頻率管理的部分,執委會認為成員國間各自為政的頻率釋出與管理政策拖累了整體歐盟的5G布建進程,目前5G的涵蓋率與普及率仍不如預期,成員國間的數位發展程度也參差不齊,法規環境差異對跨境提供服務所造成的障礙亦導致數位單一市場難以成形。為避免相同困境在6G重演及因應發展衛星通訊服務帶來的跨境頻率管理議題,歐盟將更進一步同調各成員國的頻率管理政策與規範環境,提高歐盟對頻率政策的掌控,確保歐盟通訊網路的安全性、獨立性和完整性。 海纜的安全性亦受到關注,歐盟既有電子通訊網路和服務的監管架構並未就雲端服務業者規範相關的義務,但隨著大型雲端服務業者持續投入海纜建設,歐盟已經有超過60% 的國際流量透過非公眾網路業者建設的海纜傳輸,監理上的漏洞已經形成歐盟通訊網路的安全隱患。 執委會將與各界展開廣泛的討論與磋商,研議能確保安全與韌性之數位基礎設施的政策工具及監理框架。在頻率管理方面,希望能提高歐盟的一致性與協調性,為地面通訊、衛星通訊及其他新興應用的頻率使用提供更統一甚至單一的授權流程及選擇條件,以促進數位單一市場的形成;在海纜方面亦規劃建立歐盟層級的聯合治理體系,將針對海纜的風險、弱點及依賴性做全面性的評估,亦將資助既有海纜的升級與新海纜的設立,同時確保供應鏈的安全性及降低對高風險第三國的依賴。
日本政府擬修法擴大個人編號卡(My Number Card)資料使用及調取範圍日本政府於2022年11月29日公布「個人編號法」(平成二十五年法律第二十七号,行政手続における特定の個人を識別するための番号の利用等に関する法律)之預計修正內容。 目前個人編號法第9條第2項主要限定於社會保障、稅收、災害防治三個領域,該法對哪一些行政機關能調取,以及可調取個人資料的種類均有詳細規定。本次修正案目的為將個人編號的用途擴大,除了前揭所提三個領域外,將再包括國家資格管理、汽車登記以及外籍居民行政程序、國家急難救助金及其他津貼發放等。其次,為擴大個人編號用途與增加運用彈性,此次修法重點之一在於擴大該法第4章第19條特定個人編號(My Number)提供限制中,第17款關於其他依據「個人資料保護委員會」所訂規則準用事項範圍。未來日本政府可透過「政省令」的修改(基於國會立法授權,而由行政部門所頒訂,具有對外法拘束力,類似我國法規命令位階),讓政府及相關機關能在有需要時即可蒐集特定個人編號,以迅速、彈性地對應外在情況。 本案若經國會審議通過後,細節部分還需約時二年修改作業系統,最快預定令和7年(2025年度)施行。其他修正重點如:1.將公家機關掌握民眾銀行帳戶資訊和個人編號自動連結,此舉係為改善疫情期間之問題,未來將可使政府發放補助金及急難救助金時更為順暢;2.尚未取得個人編號卡仍可申請「資格確認書」參加社會保險或診療;3.嬰幼兒五歲前「個人編號卡」都不須附上照片等。 唯輿論有批評,在尚未經過國會及有識者充分討論前,貿然大幅擴大資料調取、使用範圍,尤其日本政府計畫將個人所有銀行帳戶都強制連結個人編號,可能讓政府更容易掌握民眾資訊,像是追蹤稅務狀況、打擊逃漏稅等。日本「個人編號法」主管機關總務省則再三保證個人編號卡晶片不會儲存稅金、年金等個人資料,即使作為醫療或健康用途時,也不會紀錄健檢結果和服用藥物等訊息。雖然仍有部分待改進處,惟日本以專法規定個人編號卡儲存資料之種類與範圍,並於該法中說明相關管理措施,仍值得我國未來密切關注。
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
歐盟執委會發布人工智慧創新政策套案歐盟執委會(European Commission)於2024年1月24日發布AI創新政策套案(AI innovation package),將提供全面性的激勵措施,協助AI新創公司、中小企業與歐盟AI技術之發展。AI創新政策套案預計將修訂〈歐盟高效運算聯合承諾〉(the European High Performance Computing Joint Undertaking),以創建AI工廠(AI factories);成立AI辦公室(AI Office);並建立歐盟AI新創與創新交流(EU AI startup and innovation communication),重點分述如下: (1)AI工廠:歐盟執委會在將2027年前透過〈歐盟高效運算聯合承諾〉投資80億歐元,在歐盟境內建設全新的超級電腦,或升級現有高效運算設備,實現高速機器學習(fast machine learning)與訓練大型通用AI模型(large general-purpose AI models),使AI新創公司有機會使用超級電腦與大型通用AI模型來開發各種AI應用。並且,AI工廠將坐落於大型資料存儲中心(large-scale data storage facility)周圍,讓AI模型於訓練時可取得大量可靠的資料。其次,AI工廠將藉由開放超級電腦來吸引大量人才,包含學生、研究員、科學家與新創業者,以培養歐盟高階AI人才,供未來歐盟持續發展可信任的AI(Trustworthy AI)。 (2)AI辦公室:該辦公室將設置於歐盟執委會內,用於確認與協調歐盟成員國AI政策的一致性。此外,該辦公室未來亦將用於監督即將通過之歐盟《AI法案》(AI Act)的執行成效。 (3)歐盟AI新創與創新交流:歐盟執委會將透過〈展望歐洲〉(Horizon Europe)與〈數位歐洲計畫〉(Digital Europe Programme),在2027年前投入40億歐元的公部門與私人投資,俾利歐盟開發生成式AI(Generative AI)模型。該政策套案亦將加速歐盟共同資料空間(Common European Data Spaces)之發展,使歐洲企業得取得可靠且具價值性之資料來訓練AI模型。最後,執委會將啟動歐盟〈生成式AI倡議〉(GenAI4EU initiative),將AI工廠所訓練之生成式AI應用於工業用與服務型機器人、醫療保健、生物科技與化學、材料與電池、製造與工程、車輛移動、氣候變遷與環境保護、網路安全、太空、農業等實際領域,刺激產業創新發展,改善人類生活。