美國聯邦法院陪審團(San Jose, California federal jury) 於2008年3月26日裁定Rambus之記憶體晶片專利未違反反托拉斯法 (anti-trust)及於制定晶片業重要標準時未非法欺騙JEDEC(Joint Electron Device Engineering Council)成員。 記憶體製造商Hynix Semiconductor, Micron Technology 及台灣南亞科技公司指控Rambus 的專利違反了反托拉斯法,企圖透過其專利壟斷六個技術市場。前三家公司並認為依法專利不得涵蓋產業組織JEDEC的設計規格,指控Rambus 的專利涵蓋關於DRAM介面技術的JEDEC行業標準中的內容。 此三家公司另指控Rambus於產業標準制定過程中蓄意扭轉關鍵JEDEC標準的制定,構成欺詐之行為。 但陪審團於3月26日的審判中否決原告的控訴,認為原告未能提出足夠證據以證明被告之違反反托拉斯法與欺詐行為。 Rambus 將可望藉此判決獲取最少美金1.344億元以上的權利金 (Rambus於2006年指控Hynix 侵犯其擁有的專利一案獲賠美金1.344億元)。Rambus 另控訴Micron Technology與三星(Samsung Electronics Co.)侵害其記憶體專利權。於獲得勝訴後,Rambus 表示其不排除尋求禁止令禁止Hynix 繼續製造侵害其專利的產品。 Micro Technology 則表示它堅決不同意陪審團判決,其法律事務副總裁Rod Lewis表示:Micro Technology認為,Rambus公司從事了一系列欺騙、銷毀證據、虛假證詞和其他不正當活動,企圖誤導和提取不公正的專利授權費用。因此,Micro Technology打算對判決結果進行上訴。另外,Micro Technology也認為,Rambus的專利權是無效的,已要求美國法院駁回Rambus向Micro Technology提出的專利索賠。
歐盟個人資料保護小組提出智慧電錶隱私指導原則由於近年來運算技術的成熟,使得許多仰賴高運算技術的產業有重新發展的契機,智慧電網正是其中一例;而智慧電網所涉及的資訊繁多,例如個人資產的位址資訊可能會被納入電網中作定位與分析,因此其所衍伸的個人資料與隱私保護議題,近來備受重視。 歐盟個人資料保護小組(Article 29 Data Protection Working Party)於今年四月針對智慧電錶的隱私議題,提出指導建議(Opinion 12/2011 on Smart Metering),並明確指出,電網中的電錶會有一組獨特的識別碼(Meter Identification Number),此可連結至特定用戶,因此由電錶蒐集到的資訊,大部分都符合歐盟個人資料保護指令(Directive 95/46/EC)中的「個人資料」(Personal Data)。 倘若要對透過電錶所蒐集的資料進行處理,必須要基於充分告知(Fully-informed),取得用戶同意;也應該讓用戶依照意願自主行使同意或撤銷該同意,此會涉及電錶設計的方式,該小組建議可在用戶端電錶的控制鑲板上設置「按鈕」(Push Button),讓用戶得隨時選擇同意與否。另外,智慧電錶亦具有設定資料傳輸頻率的功能,此攸關資料被蒐集之範圍是否妥適,舉例言之,倘若用戶與電網服務提供者之契約,是全天以同一個費率計算電價,則其電錶會把整日用電量讀成一筆資料,反之倘若用戶是採用一天分不同時段不同費率的方式,則該電錶會每日分成數個時段讀取用電量;惟在供應端可遠端遙控這些電錶讀取頻率的情況下,應確保這些資料僅於系統運行所需,方傳輸至供應端供讀取。 其他的電表資訊處理細節,事實上類似於電信事業處理交通資訊或位址資訊的作法,例如不再用到的電錶資訊,應盡速刪除之;供應端也必須訂定書面的資料保存政策、評估所需電錶資訊之目的、並在該目的範圍內以最小限度原則保存之。
日本經產省提出創新政策落實方向由於日本近年研發品質、數量停滯不前,加上企業研發效率亦落後於外國,經濟產業省(簡稱經產省)於2024年6月21日從三個面向提出政策建議,期能打造成功創新模式。重點如下: 1.發揮新創企業與大企業優勢,促進研發投資 由於研發投資具有回收期間長、獲利不確定等特徵,短時內難以看到成效,故為鼓勵企業持續投入研發,經產省擬制定研發投資效率評價指標,並將透過「新創培育五年計畫」(「スタートアップ育成5カ年計画)下之「新創推動框架」(スタートアップ推進枠),將科研預算優先分配予重點項目,以建立友善研發環境。 2.透過新創資源流動,促進商業化和創造附加價值 新創企業初期往往受限於人力、技術和設備等資源不足問題,難以快速成長及擴張。為解決上述問題,經產省擬制定「跨領域學習」指引及案例集,期能促進新創資源流動,打造創新生態系統。 3.以需求為導向之前瞻技術研發 部份具有高度發展潛力之前瞻技術,如量子和核融合等,因研發風險較高且市場需求不明,將由新能源‧產業技術綜合開發機構(新エネルギー・産業技術総合開発機構)、產業技術綜合研究所(產業技術綜合研究所)等法人進行研發。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現